C++ Mathematical Expression Library (ExprTk) http://www.partow.net/programming/exprtk/index.html

This commit is contained in:
Arash Partow
2012-05-18 07:31:29 +10:00
parent d50a00a84d
commit 26f17458a4
3 changed files with 88 additions and 82 deletions

View File

@ -546,57 +546,57 @@ namespace exprtk
return erfc_impl(static_cast<double>(v),real_type_tag());
}
template <typename T> inline T abs_impl (const T v, real_type_tag) { return std::abs (v); }
template <typename T> inline T acos_impl (const T v, real_type_tag) { return std::acos (v); }
template <typename T> inline T asin_impl (const T v, real_type_tag) { return std::asin (v); }
template <typename T> inline T atan_impl (const T v, real_type_tag) { return std::atan (v); }
template <typename T> inline T ceil_impl (const T v, real_type_tag) { return std::ceil (v); }
template <typename T> inline T cos_impl (const T v, real_type_tag) { return std::cos (v); }
template <typename T> inline T cosh_impl (const T v, real_type_tag) { return std::cosh (v); }
template <typename T> inline T exp_impl (const T v, real_type_tag) { return std::exp (v); }
template <typename T> inline T floor_impl(const T v, real_type_tag) { return std::floor(v); }
template <typename T> inline T log_impl (const T v, real_type_tag) { return std::log (v); }
template <typename T> inline T log10_impl(const T v, real_type_tag) { return std::log10(v); }
template <typename T> inline T neg_impl (const T v, real_type_tag) { return -v; }
template <typename T> inline T pos_impl (const T v, real_type_tag) { return +v; }
template <typename T> inline T round_impl(const T v, real_type_tag) { return std::floor(v + T(0.5)); }
template <typename T> inline T sin_impl (const T v, real_type_tag) { return std::sin (v); }
template <typename T> inline T sinh_impl (const T v, real_type_tag) { return std::sinh (v); }
template <typename T> inline T sqrt_impl (const T v, real_type_tag) { return std::sqrt (v); }
template <typename T> inline T tan_impl (const T v, real_type_tag) { return std::tan (v); }
template <typename T> inline T tanh_impl (const T v, real_type_tag) { return std::tanh (v); }
template <typename T> inline T cot_impl (const T v, real_type_tag) { return T(1) / std::tan(v); }
template <typename T> inline T sec_impl (const T v, real_type_tag) { return T(1) / std::cos(v); }
template <typename T> inline T csc_impl (const T v, real_type_tag) { return T(1) / std::sin(v); }
template <typename T> inline T r2d_impl (const T v, real_type_tag) { return (v * T(numeric::constant::_180_pi)); }
template <typename T> inline T d2r_impl (const T v, real_type_tag) { return (v * T(numeric::constant::pi_180)); }
template <typename T> inline T d2g_impl (const T v, real_type_tag) { return (v * T(20.0/9.0)); }
template <typename T> inline T g2d_impl (const T v, real_type_tag) { return (v * T(9.0/20.0)); }
template <typename T> inline T notl_impl (const T v, real_type_tag) { return (v != T(0) ? T(0) : T(1)); }
template <typename T> inline T abs_impl(const T& v, real_type_tag) { return std::abs (v); }
template <typename T> inline T acos_impl(const T& v, real_type_tag) { return std::acos (v); }
template <typename T> inline T asin_impl(const T& v, real_type_tag) { return std::asin (v); }
template <typename T> inline T atan_impl(const T& v, real_type_tag) { return std::atan (v); }
template <typename T> inline T ceil_impl(const T& v, real_type_tag) { return std::ceil (v); }
template <typename T> inline T cos_impl(const T& v, real_type_tag) { return std::cos (v); }
template <typename T> inline T cosh_impl(const T& v, real_type_tag) { return std::cosh (v); }
template <typename T> inline T exp_impl(const T& v, real_type_tag) { return std::exp (v); }
template <typename T> inline T floor_impl(const T& v, real_type_tag) { return std::floor(v); }
template <typename T> inline T log_impl(const T& v, real_type_tag) { return std::log (v); }
template <typename T> inline T log10_impl(const T& v, real_type_tag) { return std::log10(v); }
template <typename T> inline T neg_impl(const T& v, real_type_tag) { return -v; }
template <typename T> inline T pos_impl(const T& v, real_type_tag) { return +v; }
template <typename T> inline T round_impl(const T& v, real_type_tag) { return std::floor(v + T(0.5)); }
template <typename T> inline T sin_impl(const T& v, real_type_tag) { return std::sin (v); }
template <typename T> inline T sinh_impl(const T& v, real_type_tag) { return std::sinh (v); }
template <typename T> inline T sqrt_impl(const T& v, real_type_tag) { return std::sqrt (v); }
template <typename T> inline T tan_impl(const T& v, real_type_tag) { return std::tan (v); }
template <typename T> inline T tanh_impl(const T& v, real_type_tag) { return std::tanh (v); }
template <typename T> inline T cot_impl(const T& v, real_type_tag) { return T(1) / std::tan(v); }
template <typename T> inline T sec_impl(const T& v, real_type_tag) { return T(1) / std::cos(v); }
template <typename T> inline T csc_impl(const T& v, real_type_tag) { return T(1) / std::sin(v); }
template <typename T> inline T r2d_impl(const T& v, real_type_tag) { return (v * T(numeric::constant::_180_pi)); }
template <typename T> inline T d2r_impl(const T& v, real_type_tag) { return (v * T(numeric::constant::pi_180)); }
template <typename T> inline T d2g_impl(const T& v, real_type_tag) { return (v * T(20.0/9.0)); }
template <typename T> inline T g2d_impl(const T& v, real_type_tag) { return (v * T(9.0/20.0)); }
template <typename T> inline T notl_impl(const T& v, real_type_tag) { return (v != T(0) ? T(0) : T(1)); }
template <typename T> inline T abs_impl (const T v, int_type_tag) { return std::abs (v); }
template <typename T> inline T exp_impl (const T v, int_type_tag) { return std::exp (v); }
template <typename T> inline T log_impl (const T v, int_type_tag) { return std::log (v); }
template <typename T> inline T log10_impl(const T v, int_type_tag) { return std::log10(v); }
template <typename T> inline T neg_impl (const T v, int_type_tag) { return -v; }
template <typename T> inline T pos_impl (const T v, int_type_tag) { return +v; }
template <typename T> inline T ceil_impl (const T v, int_type_tag) { return v; }
template <typename T> inline T floor_impl(const T v, int_type_tag) { return v; }
template <typename T> inline T round_impl(const T v, int_type_tag) { return v; }
template <typename T> inline T notl_impl (const T v, int_type_tag) { return !v; }
template <typename T> inline T sqrt_impl (const T v, int_type_tag) { return std::sqrt (v); }
template <typename T> inline T acos_impl (const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T asin_impl (const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T atan_impl (const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T cos_impl (const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T cosh_impl (const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T sin_impl (const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T sinh_impl (const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T tan_impl (const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T tanh_impl (const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T cot_impl (const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T sec_impl (const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T csc_impl (const T , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T abs_impl(const T& v, int_type_tag) { return std::abs (v); }
template <typename T> inline T exp_impl(const T& v, int_type_tag) { return std::exp (v); }
template <typename T> inline T log_impl(const T& v, int_type_tag) { return std::log (v); }
template <typename T> inline T log10_impl(const T& v, int_type_tag) { return std::log10(v); }
template <typename T> inline T neg_impl(const T& v, int_type_tag) { return -v; }
template <typename T> inline T pos_impl(const T& v, int_type_tag) { return +v; }
template <typename T> inline T ceil_impl(const T& v, int_type_tag) { return v; }
template <typename T> inline T floor_impl(const T& v, int_type_tag) { return v; }
template <typename T> inline T round_impl(const T& v, int_type_tag) { return v; }
template <typename T> inline T notl_impl(const T& v, int_type_tag) { return !v; }
template <typename T> inline T sqrt_impl(const T& v, int_type_tag) { return std::sqrt (v); }
template <typename T> inline T acos_impl(const T& , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T asin_impl(const T& , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T atan_impl(const T& , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T cos_impl(const T& , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T cosh_impl(const T& , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T sin_impl(const T& , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T sinh_impl(const T& , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T tan_impl(const T& , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T tanh_impl(const T& , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T cot_impl(const T& , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T sec_impl(const T& , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T> inline T csc_impl(const T& , int_type_tag) { return std::numeric_limits<T>::quiet_NaN(); }
template <typename T>
inline bool is_integer_impl(const T& v, real_type_tag)
@ -2077,8 +2077,24 @@ namespace exprtk
bool branch_deletable_;
};
template<typename T, std::size_t D, bool B>
struct construct_branch_pair
{
template <std::size_t N>
static inline void process(std::pair<expression_node<T>*,bool> (&)[N], expression_node<T>*)
{}
};
template<typename T, std::size_t D>
struct construct_branch_pair<T,D,true>
{
template <std::size_t N>
static inline void process(std::pair<expression_node<T>*,bool> (&branch)[N], expression_node<T>* b)
{ if (b) branch[D] = std::make_pair(b,branch_deletable(b)); }
};
template <std::size_t N, typename T>
inline void init_branches(std::pair< expression_node<T>*,bool> (&branch)[N],
inline void init_branches(std::pair<expression_node<T>*,bool> (&branch)[N],
expression_node<T>* b0,
expression_node<T>* b1 = reinterpret_cast<expression_node<T>*>(0),
expression_node<T>* b2 = reinterpret_cast<expression_node<T>*>(0),
@ -2090,25 +2106,16 @@ namespace exprtk
expression_node<T>* b8 = reinterpret_cast<expression_node<T>*>(0),
expression_node<T>* b9 = reinterpret_cast<expression_node<T>*>(0))
{
typedef expression_node<T> Node;
//Needed for incompetent and broken msvc compiler versions
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4127)
#endif
if (b0 && (N > 0)) { branch[0] = std::make_pair(b0,branch_deletable(b0)); }
if (b1 && (N > 1)) { branch[1] = std::make_pair(b1,branch_deletable(b1)); }
if (b2 && (N > 2)) { branch[2] = std::make_pair(b2,branch_deletable(b2)); }
if (b3 && (N > 3)) { branch[3] = std::make_pair(b3,branch_deletable(b3)); }
if (b4 && (N > 4)) { branch[4] = std::make_pair(b4,branch_deletable(b4)); }
if (b5 && (N > 5)) { branch[5] = std::make_pair(b5,branch_deletable(b5)); }
if (b6 && (N > 6)) { branch[6] = std::make_pair(b6,branch_deletable(b6)); }
if (b7 && (N > 7)) { branch[7] = std::make_pair(b7,branch_deletable(b7)); }
if (b8 && (N > 8)) { branch[8] = std::make_pair(b8,branch_deletable(b8)); }
if (b9 && (N > 9)) { branch[9] = std::make_pair(b9,branch_deletable(b9)); }
#ifdef _MSC_VER
#pragma warning(pop)
#endif
construct_branch_pair<T,0,(N > 0)>::process(branch,b0);
construct_branch_pair<T,1,(N > 1)>::process(branch,b1);
construct_branch_pair<T,2,(N > 2)>::process(branch,b2);
construct_branch_pair<T,3,(N > 3)>::process(branch,b3);
construct_branch_pair<T,4,(N > 4)>::process(branch,b4);
construct_branch_pair<T,5,(N > 5)>::process(branch,b5);
construct_branch_pair<T,6,(N > 6)>::process(branch,b6);
construct_branch_pair<T,7,(N > 7)>::process(branch,b7);
construct_branch_pair<T,8,(N > 8)>::process(branch,b8);
construct_branch_pair<T,9,(N > 9)>::process(branch,b9);
}
template <typename T, std::size_t N>
@ -7892,6 +7899,7 @@ namespace exprtk
"1 - sin(2 * x) + cos(pi / y)",
"sqrt(1 - sin(2 * x) + cos(pi / y) / 3)",
"(x^2 / sin(2 * pi / y)) -x / 2",
"x + (cos(y - sin(2 / x * pi)) - sin(x - cos(2 * y / pi))) - y",
"clamp(-1.0, sin(2 * pi * x) + cos(y / 2 * pi), +1.0)",
"max(3.33, min(sqrt(1 - sin(2 * x) + cos(pi / y) / 3), 1.11))",
"if(avg(x,y) <= x + y, x - y, x * y) + 2 * pi / x",
@ -7906,10 +7914,11 @@ namespace exprtk
"1 - sin(2 * xx) + cos(pi / yy)",
"sqrt(1 - sin(2 * xx) + cos(pi / yy) / 3)",
"(xx^2 / sin(2 * pi / yy)) -xx / 2",
"xx + (cos(yy - sin(2 / xx * pi)) - sin(xx - cos(2 * yy / pi))) - yy",
"clamp(-1.0, sin(2 * pi * xx) + cos(yy / 2 * pi), +1.0)",
"max(3.33, min(sqrt(1 - sin(2 * xx) + cos(pi / yy) / 3), 1.11))",
"if(avg(xx,yy) <= xx + yy, xx - yy, xx * yy) + 2 * pi / xx",
"1.1xx^1 + 2.2yy^2 - 3.3xx^3 + 4.4yy^4 - 5.5xx^5 + 6.6yy^6 - 7.7xx^27 + 8.8yy^55",
"1.1xx^1 + 2.2yy^2 - 3.3xx^3 + 4.4yy^4 - 5.5xx^5 + 6.6yy^6 - 7.7xx^27 + 8.8yy^55"
};
static const std::size_t expression_list_size = sizeof(expression_list) / sizeof(std::string);