/* ************************************************************** * C++ Mathematical Expression Toolkit Library * * * * Simple Example 15 * * Author: Arash Partow (1999-2024) * * URL: https://www.partow.net/programming/exprtk/index.html * * * * Copyright notice: * * Free use of the Mathematical Expression Toolkit Library is * * permitted under the guidelines and in accordance with the * * most current version of the MIT License. * * https://www.opensource.org/licenses/MIT * * SPDX-License-Identifier: MIT * * * ************************************************************** */ #include #include #include "exprtk.hpp" template void black_scholes_merton_model() { typedef exprtk::symbol_table symbol_table_t; typedef exprtk::expression expression_t; typedef exprtk::parser parser_t; const std::string bsm_model_program = " var d1 := (log(s / k) + (r + v^2 / 2) * t) / (v * sqrt(t)); " " var d2 := d1 - v * sqrt(t); " " " " if (callput_flag == 'call') " " s * ncdf(d1) - k * e^(-r * t) * ncdf(d2); " " else if (callput_flag == 'put') " " k * e^(-r * t) * ncdf(-d2) - s * ncdf(-d1); " " "; T s = T(60.00); // Spot / Stock / Underlying / Base price T k = T(65.00); // Strike price T v = T( 0.30); // Volatility T t = T( 0.25); // Years to maturity T r = T( 0.08); // Risk free rate std::string callput_flag; static const T e = exprtk::details::numeric::constant::e; symbol_table_t symbol_table; symbol_table.add_variable("s",s); symbol_table.add_variable("k",k); symbol_table.add_variable("t",t); symbol_table.add_variable("r",r); symbol_table.add_variable("v",v); symbol_table.add_constant("e",e); symbol_table.add_stringvar("callput_flag",callput_flag); expression_t expression; expression.register_symbol_table(symbol_table); parser_t parser; parser.compile(bsm_model_program,expression); callput_flag = "call"; const T bsm_call_option_price = expression.value(); callput_flag = "put"; const T bsm_put_option_price = expression.value(); printf("BSM(call, %5.3f, %5.3f, %5.3f, %5.3f, %5.3f) = %10.6f\n", s, k, t, r, v, bsm_call_option_price); printf("BSM(put , %5.3f, %5.3f, %5.3f, %5.3f, %5.3f) = %10.6f\n", s, k, t, r, v, bsm_put_option_price); const T put_call_parity_diff = (bsm_call_option_price - bsm_put_option_price) - (s - k * std::exp(-r * t)); printf("Put-Call parity difference: %20.17f\n", put_call_parity_diff); } int main() { black_scholes_merton_model(); return 0; }