phasicFlow/tutorials/sphereGranFlow/toteblender/ReadMe.md

343 lines
7.8 KiB
Markdown
Raw Normal View History

2023-03-26 15:28:42 +00:00
# Problem Definition
The problem is to simulate a double pedestal tote blender with the diameter **0.03 m** and **0.1 m** respectively, the length **0.3 m**, rotating at **28 rpm**. This blender is filled with **24000** Particles. The timestep for integration is **0.00001 s**. There is one type of Particle in this blender that are being inserted during simulation to fill the blender.
* **24000** particles with **5 mm** diameter, at the rate of 24000 particles/s for 1 sec. َAfter settling particles, this blender starts to rotate at t=**1s**. For better and faster performace in simulations where the number of particles is very large, the format of the files is saved as **ASCII**.
2023-03-26 15:28:42 +00:00
<html>
<body>
<div align="center"><b>
a view of the tote-blender while rotating
</div></b>
<div align="center">
<img src="sample sample sample sample", width=700px>
</div>
</body>
</html>
# Setting up the Case
As it has been explained in the previous cases, the simulation case setup is based on text-based scripts. Here, the simulation case setup are sotred in two folders: `caseSetup`, `setting`. (see the above folders). Unlike the previous cases, this case does not have the `stl` file. and the geometry is described in the `geometryDict` file.
## Defining particles
Then in the `caseSetup/sphereShape` the diameter and the material name of the particles are defined.
```C++
// name of shapes
2023-03-26 15:28:42 +00:00
names (sphere1);
2023-03-26 15:28:42 +00:00
// diameter of shapes (m)
diameters (0.005);
// material name for shapes
materials (solidProperty);
2023-03-26 15:28:42 +00:00
```
## Particle Insertion
In this case we have a region for ordering particles. These particles are placed in this blender. For example the script for the inserted particles is shown below.
<div align="center">
in <b>caseSetup/particleInsertion</b> file
</div>
```C++
// positions particles
positionParticles
{
// ordered positioning
method positionOrdered;
// maximum number of particles in the simulation
maxNumberOfParticles 25001;
// perform initial sorting based on morton code?
mortonSorting Yes;
// cylinder for positioning particles
cylinder
2023-03-26 15:28:42 +00:00
{
// Coordinates of top cylinderRegion (m,m,m)
p1 (0.0 0.0 0.09);
p2 (0.0 0.0 0.21);
// radius of cylinder
radius 0.09;
2023-03-26 15:28:42 +00:00
}
positionOrderedInfo
{
// minimum space between centers of particles
diameter 0.005;
// number of particles in the simulation
numPoints 24000;
// axis order for filling the space with particles
axisOrder (x y z);
}
}
2023-03-26 15:28:42 +00:00
```
## Interaction between particles
In `caseSetup/interaction` file, material names and properties and interaction parameters are defined: interaction between the particles of Tote Blender. Since we are defining 1 material for simulation, the interaction matrix is 1x1 (interactions are symetric).
2023-03-26 15:28:42 +00:00
```C++
// a list of materials names
materials (solidProperty);
2023-03-26 15:28:42 +00:00
// density of materials [kg/m3]
densities (1000.0);
contactListType sortedContactList;
model
{
contactForceModel nonLinearNonLimited;
rollingFrictionModel normal;
2023-03-26 15:28:42 +00:00
/*
Property (solidProperty-solidProperty);
2023-03-26 15:28:42 +00:00
*/
// Young modulus [Pa]
2023-03-26 15:28:42 +00:00
Yeff (1.0e6);
// Shear modulus [Pa]
2023-03-26 15:28:42 +00:00
Geff (0.8e6);
// Poisson's ratio [-]
2023-03-26 15:28:42 +00:00
nu (0.25);
// coefficient of normal restitution
2023-03-26 15:28:42 +00:00
en (0.7);
// coefficient of tangential restitution
2023-03-26 15:28:42 +00:00
et (1.0);
// dynamic friction
2023-03-26 15:28:42 +00:00
mu (0.3);
// rolling friction
mur (0.1);
2023-03-26 15:28:42 +00:00
}
```
## Settings
### Geometry
In the `settings/geometryDict` file, the geometry and axis of rotation is defined for the blender. The geometry is composed of a cylinder inlet and outlet, cone shell top and down, a cylinder shell and enter and exit Gate.
2023-03-26 15:28:42 +00:00
```C++
surfaces
{
topGate
2023-03-26 15:28:42 +00:00
{
// type of wall
type cylinderWall;
// begin point of cylinder axis
p1 (0.0 0.0 0.3);
// end point of cylinder axis
p2 (0.0 0.0 0.301);
// radius at p1
radius1 0.03;
// radius at p2
radius2 0.0001;
// material of wall
material solidProperty;
// motion component name
motion axisOfRotation;
2023-03-26 15:28:42 +00:00
}
topCylinder
2023-03-26 15:28:42 +00:00
{
// type of the wall
2023-03-26 15:28:42 +00:00
type cylinderWall;
// begin point of cylinder axis
2023-03-26 15:28:42 +00:00
p1 (0.0 0.0 0.28);
// end point of cylinder axis
2023-03-26 15:28:42 +00:00
p2 (0.0 0.0 0.3);
// radius at p1
2023-03-26 15:28:42 +00:00
radius1 0.03;
// radius at p2
2023-03-26 15:28:42 +00:00
radius2 0.03;
// number of divisions
2023-03-26 15:28:42 +00:00
resolution 36;
// material name of this wall
material solidProperty;
// motion component name
motion axisOfRotation;
2023-03-26 15:28:42 +00:00
}
coneShelltop
{
// type of the wall
2023-03-26 15:28:42 +00:00
type cylinderWall;
// begin point of cylinder axis
2023-03-26 15:28:42 +00:00
p1 (0.0 0.0 0.2);
// end point of cylinder axis
2023-03-26 15:28:42 +00:00
p2 (0.0 0.0 0.28);
// radius at p1
2023-03-26 15:28:42 +00:00
radius1 0.1;
// radius at p2
2023-03-26 15:28:42 +00:00
radius2 0.03;
// number of divisions
2023-03-26 15:28:42 +00:00
resolution 36;
// material name of this wall
material solidProperty;
// motion component name
motion axisOfRotation;
2023-03-26 15:28:42 +00:00
}
cylinderShell
{
// type of the wall
2023-03-26 15:28:42 +00:00
type cylinderWall;
// begin point of cylinder axis
2023-03-26 15:28:42 +00:00
p1 (0.0 0.0 0.1);
// end point of cylinder axis
2023-03-26 15:28:42 +00:00
p2 (0.0 0.0 0.2);
// radius at p1
2023-03-26 15:28:42 +00:00
radius1 0.1;
// radius at p2
2023-03-26 15:28:42 +00:00
radius2 0.1;
// number of divisions
2023-03-26 15:28:42 +00:00
resolution 36;
// material name of this wall
material solidProperty;
// motion component name
motion axisOfRotation;
2023-03-26 15:28:42 +00:00
}
coneShelldown
2023-03-26 15:28:42 +00:00
{
// type of the wall
2023-03-26 15:28:42 +00:00
type cylinderWall;
// begin point of cylinder axis
2023-03-26 15:28:42 +00:00
p1 (0.0 0.0 0.02);
// end point of cylinder axis
2023-03-26 15:28:42 +00:00
p2 (0.0 0.0 0.1);
// radius at p1
2023-03-26 15:28:42 +00:00
radius1 0.03;
// radius at p2
2023-03-26 15:28:42 +00:00
radius2 0.1;
// number of divisions
2023-03-26 15:28:42 +00:00
resolution 36;
// material name of this wall
material solidProperty;
// motion component name
motion axisOfRotation;
2023-03-26 15:28:42 +00:00
}
bottomCylinder
2023-03-26 15:28:42 +00:00
{
// type of the wall
2023-03-26 15:28:42 +00:00
type cylinderWall;
// begin point of cylinder axis
2023-03-26 15:28:42 +00:00
p1 (0.0 0.0 0.0);
// end point of cylinder axis
2023-03-26 15:28:42 +00:00
p2 (0.0 0.0 0.02);
// radius at p1
2023-03-26 15:28:42 +00:00
radius1 0.03;
// radius at p2
2023-03-26 15:28:42 +00:00
radius2 0.03;
// number of divisions
2023-03-26 15:28:42 +00:00
resolution 36;
// material name of this wall
material solidProperty;
// motion component name
motion axisOfRotation;
2023-03-26 15:28:42 +00:00
}
exitGate
2023-03-26 15:28:42 +00:00
{
// type of the wall
type cylinderWall;
// begin point of cylinder axis
p1 (0.0 0.0 -0.001);
// end point of cylinder axis
p2 (0.0 0.0 0.0);
// radius at p1
radius1 0.03;
// radius at p2
radius2 0.0001;
// number of divisions
resolution 36;
// material name of this wall
material solidProperty;
// motion component name
motion axisOfRotation;
2023-03-26 15:28:42 +00:00
}
}
```
### Rotating Axis Info
In this part of `geometryDict` the information of rotating axis and speed of rotation are defined. Unlike the previous cases, the rotation of this blender starts at time=**0 s**.
```C++
// information for rotatingAxisMotion motion model
2023-03-26 15:28:42 +00:00
rotatingAxisMotionInfo
{
axisOfRotation
2023-03-26 15:28:42 +00:00
{
p1 (-0.1 0.0 0.15); // first point for the axis of rotation
p2 ( 0.1 0.0 0.15); // second point for the axis of rotation
omega 1.5708; // rotation speed ==> 15 rad/s
// Start time of Geometry Rotating (s)
startTime 0.5;
// End time of Geometry Rotating (s)
endTime 9.5;
2023-03-26 15:28:42 +00:00
}
}
```
## Performing Simulation
To perform simulations, enter the following commands one after another in the terminal.
Enter `$ particlesPhasicFlow` command to create the initial fields for particles.
Enter `$ geometryPhasicFlow` command to create the Geometry.
At last, enter `$ sphereGranFlow` command to start the simulation.
After finishing the simulation, you can use `$ pFlowtoVTK` to convert the results into vtk format storred in ./VTK folder.