The problem is to simulate a Rotary Air-Lock Valve. The external diameter of rotor is about 21 cm. There is one type of particle in this simulation. Particles are inserted into the inlet of the valve from t=**0** s.
* **28000** particles with **5 mm** diameter are inserted into the valve with the rate of **4000 particles/s**.
* The rotor starts its ortation at t = 1.25 s at the rate of 2.1 rad/s.
As it has been explained in the previous simulations, the simulation case setup is based on text-based scripts. Here, the simulation case setup files are stored into three folders: `caseSetup`, `setting`, and `stl` (see the above folders). See next the section for more information on how we can setup the geometry and its rotation.
In file `settings/geometryDict` the information of rotating axis of rotor and its speed of rotation are defined. The rotation starts at t = **1.25 s** and ends at t = **7 s**.
In `settings/geometryDict` file, the surfaces component are defined to form a Rotating Air-Lock Valve. All surface components are supplied in stl file format. All stl files should be stored under 'stl' folder.
Insertion of particles starts from t = 0 s and ends at t = 7 s. A box is defined for the port from which particles are being inderted. The rate of insertion is 4000 particles per second.
In `caseSetup/interaction` file, material names and properties and interaction parameters are defined. Since we are defining 1 material type in the simulation, the interaction matrix is 2x2 (interactions are symmetric).