Add ReadMe file via Upload
This commit is contained in:
parent
d4dc0d7e80
commit
04d7ecfe9e
|
@ -0,0 +1,244 @@
|
||||||
|
# Problem Definition
|
||||||
|
The problem is to simulate a double pedestal tote blender with the diameter **0.03 m** and **0.1 m** respectively, the length **0.3 m**, rotating at **28 rpm**. This blender is filled with **20000** Particles. The timestep for integration is **0.00001 s**. There is one type of Particle in this blender that are being inserted during simulation to fill the drum.
|
||||||
|
* **20000** particles with **4 mm** diameter, at the rate of 20000 particles/s for 1 sec.
|
||||||
|
|
||||||
|
<html>
|
||||||
|
<body>
|
||||||
|
<div align="center"><b>
|
||||||
|
a view of the tote-blender while rotating
|
||||||
|
</div></b>
|
||||||
|
<div align="center">
|
||||||
|
<img src="sample sample sample sample", width=700px>
|
||||||
|
</div>
|
||||||
|
</body>
|
||||||
|
</html>
|
||||||
|
|
||||||
|
# Setting up the Case
|
||||||
|
As it has been explained in the previous cases, the simulation case setup is based on text-based scripts. Here, the simulation case setup are sotred in two folders: `caseSetup`, `setting`. (see the above folders). Unlike the previous cases, this case does not have the `stl` file. and the geometry is described in the `geometryDict` file.
|
||||||
|
|
||||||
|
## Defining particles
|
||||||
|
Then in the `caseSetup/sphereShape` the diameter and the material name of the particles are defined.
|
||||||
|
```C++
|
||||||
|
// names of shapes
|
||||||
|
names (sphere1);
|
||||||
|
// diameter of shapes (m)
|
||||||
|
diameters (0.004);
|
||||||
|
// material names for shapes
|
||||||
|
materials (prop1);
|
||||||
|
```
|
||||||
|
## Particle Insertion
|
||||||
|
In this case we have a region for ordering particles. These particles are placed in this blender. For example the script for the inserted particles is shown below.
|
||||||
|
|
||||||
|
<div align="center">
|
||||||
|
in <b>caseSetup/particleInsertion</b> file
|
||||||
|
</div>
|
||||||
|
|
||||||
|
```C++
|
||||||
|
// positions particles
|
||||||
|
positionParticles
|
||||||
|
{
|
||||||
|
// ordered positioning
|
||||||
|
method positionOrdered;
|
||||||
|
// maximum number of particles in the simulation
|
||||||
|
maxNumberOfParticles 40000;
|
||||||
|
// perform initial sorting based on morton code?
|
||||||
|
mortonSorting Yes;
|
||||||
|
// box for positioning particles
|
||||||
|
box
|
||||||
|
{
|
||||||
|
// lower corner point of the box
|
||||||
|
min (-0.06 -0.06 0.08);
|
||||||
|
// upper corner point of the box
|
||||||
|
max (0.06 0.06 0.18);
|
||||||
|
}
|
||||||
|
```
|
||||||
|
## Interaction between particles
|
||||||
|
In `caseSetup/interaction` file, material names and properties and interaction parameters are defined: interaction between the particles of rotating drum. Since we are defining 1 material for simulation, the interaction matrix is 1x1 (interactions are symetric).
|
||||||
|
```C++
|
||||||
|
// a list of materials names
|
||||||
|
materials (prop1);
|
||||||
|
// density of materials [kg/m3]
|
||||||
|
densities (1000.0);
|
||||||
|
|
||||||
|
contactListType sortedContactList;
|
||||||
|
|
||||||
|
model
|
||||||
|
{
|
||||||
|
contactForceModel nonLinearNonLimited;
|
||||||
|
rollingFrictionModel normal;
|
||||||
|
/*
|
||||||
|
Property (prop1-prop1);
|
||||||
|
*/
|
||||||
|
// Young modulus [Pa]
|
||||||
|
Yeff (1.0e6);
|
||||||
|
// Shear modulus [Pa]
|
||||||
|
Geff (0.8e6);
|
||||||
|
// Poisson's ratio [-]
|
||||||
|
nu (0.25);
|
||||||
|
// coefficient of normal restitution
|
||||||
|
en (0.7);
|
||||||
|
// coefficient of tangential restitution
|
||||||
|
et (1.0);
|
||||||
|
// dynamic friction
|
||||||
|
mu (0.3);
|
||||||
|
// rolling friction
|
||||||
|
mur (0.1);
|
||||||
|
|
||||||
|
}
|
||||||
|
```
|
||||||
|
## Settings
|
||||||
|
### Geometry
|
||||||
|
In the `settings/geometryDict` file, the geometry and axis of rotation is defined for the drum. The geometry is composed of a cylinder inlet and outlet, cone shell top and down, a cylinder shell and enter and exit Gate.
|
||||||
|
```C++
|
||||||
|
surfaces
|
||||||
|
{
|
||||||
|
enterGate
|
||||||
|
{
|
||||||
|
// type of wall
|
||||||
|
type planeWall;
|
||||||
|
// coords of wall
|
||||||
|
p1 (-0.05 -0.05 0.3);
|
||||||
|
p2 (-0.05 0.05 0.3);
|
||||||
|
p3 ( 0.05 0.05 0.3);
|
||||||
|
p4 (0.05 -0.05 0.3);
|
||||||
|
// material of wall
|
||||||
|
material prop1;
|
||||||
|
// motion component name
|
||||||
|
motion rotAxis;
|
||||||
|
}
|
||||||
|
|
||||||
|
cylinderinlet
|
||||||
|
{
|
||||||
|
// type of the wall
|
||||||
|
type cylinderWall;
|
||||||
|
// begin point of cylinder axis
|
||||||
|
p1 (0.0 0.0 0.28);
|
||||||
|
// end point of cylinder axis
|
||||||
|
p2 (0.0 0.0 0.3);
|
||||||
|
// radius at p1
|
||||||
|
radius1 0.03;
|
||||||
|
// radius at p2
|
||||||
|
radius2 0.03;
|
||||||
|
// number of divisions
|
||||||
|
resolution 36;
|
||||||
|
// material name of this wall
|
||||||
|
material prop1;
|
||||||
|
// motion component name
|
||||||
|
motion rotAxis;
|
||||||
|
}
|
||||||
|
|
||||||
|
coneShelltop
|
||||||
|
{
|
||||||
|
// type of the wall
|
||||||
|
type cylinderWall;
|
||||||
|
// begin point of cylinder axis
|
||||||
|
p1 (0.0 0.0 0.2);
|
||||||
|
// end point of cylinder axis
|
||||||
|
p2 (0.0 0.0 0.28);
|
||||||
|
// radius at p1
|
||||||
|
radius1 0.1;
|
||||||
|
// radius at p2
|
||||||
|
radius2 0.03;
|
||||||
|
// number of divisions
|
||||||
|
resolution 36;
|
||||||
|
// material name of this wall
|
||||||
|
material prop1;
|
||||||
|
// motion component name
|
||||||
|
motion rotAxis;
|
||||||
|
}
|
||||||
|
|
||||||
|
cylinderShell
|
||||||
|
{
|
||||||
|
// type of the wall
|
||||||
|
type cylinderWall;
|
||||||
|
// begin point of cylinder axis
|
||||||
|
p1 (0.0 0.0 0.1);
|
||||||
|
// end point of cylinder axis
|
||||||
|
p2 (0.0 0.0 0.2);
|
||||||
|
// radius at p1
|
||||||
|
radius1 0.1;
|
||||||
|
// radius at p2
|
||||||
|
radius2 0.1;
|
||||||
|
// number of divisions
|
||||||
|
resolution 36;
|
||||||
|
// material name of this wall
|
||||||
|
material prop1;
|
||||||
|
// motion component name
|
||||||
|
motion rotAxis;
|
||||||
|
}
|
||||||
|
|
||||||
|
coneShelldown
|
||||||
|
{
|
||||||
|
// type of the wall
|
||||||
|
type cylinderWall;
|
||||||
|
// begin point of cylinder axis
|
||||||
|
p1 (0.0 0.0 0.02);
|
||||||
|
// end point of cylinder axis
|
||||||
|
p2 (0.0 0.0 0.1);
|
||||||
|
// radius at p1
|
||||||
|
radius1 0.03;
|
||||||
|
// radius at p2
|
||||||
|
radius2 0.1;
|
||||||
|
// number of divisions
|
||||||
|
resolution 36;
|
||||||
|
// material name of this wall
|
||||||
|
material prop1;
|
||||||
|
// motion component name
|
||||||
|
motion rotAxis;
|
||||||
|
}
|
||||||
|
/*
|
||||||
|
This is a plane wall at the exit of silo
|
||||||
|
*/
|
||||||
|
|
||||||
|
cylinderoutlet
|
||||||
|
{
|
||||||
|
// type of the wall
|
||||||
|
type cylinderWall;
|
||||||
|
// begin point of cylinder axis
|
||||||
|
p1 (0.0 0.0 0.0);
|
||||||
|
// end point of cylinder axis
|
||||||
|
p2 (0.0 0.0 0.02);
|
||||||
|
// radius at p1
|
||||||
|
radius1 0.03;
|
||||||
|
// radius at p2
|
||||||
|
radius2 0.03;
|
||||||
|
// number of divisions
|
||||||
|
resolution 36;
|
||||||
|
// material name of this wall
|
||||||
|
material prop1;
|
||||||
|
// motion component name
|
||||||
|
motion rotAxis;
|
||||||
|
}
|
||||||
|
exitGate
|
||||||
|
{
|
||||||
|
type planeWall;
|
||||||
|
p1 (-0.05 -0.05 0);
|
||||||
|
p2 (-0.05 0.05 0);
|
||||||
|
p3 ( 0.05 0.05 0);
|
||||||
|
p4 (0.05 -0.05 0);
|
||||||
|
material prop1;
|
||||||
|
motion rotAxis;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
```
|
||||||
|
### Rotating Axis Info
|
||||||
|
In this part of `geometryDict` the information of rotating axis and speed of rotation are defined. Unlike the previous cases, the rotation of this blender starts at time=**0 s**.
|
||||||
|
```C++
|
||||||
|
rotatingAxisMotionInfo
|
||||||
|
{
|
||||||
|
rotAxis
|
||||||
|
{
|
||||||
|
p1 (-0.1 0.0 0.15); // first point for the axis of rotation
|
||||||
|
p2 (0.1 0.0 0.15); // second point for the axis of rotation
|
||||||
|
omega 3; // rotation speed (rad/s)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
## Performing Simulation
|
||||||
|
To perform simulations, enter the following commands one after another in the terminal.
|
||||||
|
|
||||||
|
Enter `$ particlesPhasicFlow` command to create the initial fields for particles.
|
||||||
|
Enter `$ geometryPhasicFlow` command to create the Geometry.
|
||||||
|
At last, enter `$ sphereGranFlow` command to start the simulation.
|
||||||
|
After finishing the simulation, you can use `$ pFlowtoVTK` to convert the results into vtk format storred in ./VTK folder.
|
Loading…
Reference in New Issue