Postprocess framework

- Executed has been completed and testd.
- regions multipleSpheres are compelete
- Docs for regions is comelete.
This commit is contained in:
Hamidreza 2025-04-15 21:27:49 +03:30
parent 077f25842a
commit 093160ba32
21 changed files with 762 additions and 171 deletions

View File

@ -10,6 +10,7 @@ set(SourceFiles
region/regionPoints/sphereRegionPoints/sphereRegionPoints.cpp
region/regionPoints/lineRegionPoints/lineRegionPoints.cpp
region/regionPoints/centerPointsRegionPoints/centerPointsRegionPoints.cpp
region/regionPoints/multipleSpheresRegionPoints/multipleSpheresRegionPoints.cpp
# Postprocess components
postprocessComponent/postprocessComponent/postprocessComponent.cpp
@ -19,6 +20,7 @@ set(SourceFiles
# Operations
operation/postprocessOperation/postprocessOperation.cpp
operation/PostprocessOperation/PostprocessOperationSum.cpp
operation/PostprocessOperation/PostprocessOperationAverage.cpp
operation/includeMask/includeMask.cpp
operation/includeMask/IncludeMasks.cpp

View File

@ -33,7 +33,7 @@ bool pFlow::fieldsDataBase::checkForUpdate(const word &name, bool forceUpdate)
if(auto [iter, found]= captureTime_.findIf(name); found)
{
shouldUpdate = iter->second < t;
shouldUpdate = iter->second < t || forceUpdate;
iter->second = t;
}
else

View File

@ -50,7 +50,7 @@ pFlow::span<T> pFlow::fieldsDataBase::updateField(const word& name, bool forceUp
{
if constexpr( std::same_as<T, realx3>)
{
return updatePoints(forceUpdate);
return updatePoints(true);
}
else
{

View File

@ -3,6 +3,7 @@
#include "fieldsDataBase.hpp"
#include "fieldFunctions.hpp"
/// Constructs sum processor and initializes result field based on input field type
pFlow::PostprocessOperationSum::PostprocessOperationSum
(
const dictionary &opDict,
@ -37,6 +38,7 @@ pFlow::PostprocessOperationSum::PostprocessOperationSum
}
}
/// Performs weighted sum of field values within each region
bool pFlow::PostprocessOperationSum::execute
(
const std::vector<span<real>>& weights

View File

@ -21,6 +21,107 @@ Licence:
#ifndef __PostprocessOperationSum_hpp__
#define __PostprocessOperationSum_hpp__
/*!
* @class PostprocessOperationSum
* @brief A class for summing field values within specified regions during post-processing.
*
* @details
* The PostprocessOperationSum class is a specialized post-processing operation that
* calculates the sum of field values within specified regions. It inherits from the
* postprocessOperation base class and implements a weighted summation operation that
* can be applied to scalar (real), vector (realx3), and tensor (realx4) fields.
*
* The sum operation follows the mathematical formula:
* \f[
* \text{result} = \sum_{i \in \text{processRegion}} w_i \cdot \phi_i \cdot \text{field}_i
* \f]
*
* Where:
* - \f$ i \f$ represents particles within the specified processing region
* - \f$ w_i \f$ is the weight factor for particle \f$ i \f$
* - \f$ \phi_i \f$ is the value from the phi field for particle \f$ i \f$
* - \f$ \text{field}_i \f$ is the value from the target field for particle \f$ i \f$
*
* The calculation can optionally be divided by the region volume (when divideByVolume is set to yes),
* which allows calculating density-like quantities:
* \f[
* \text{result} = \frac{1}{V_{\text{region}}} \sum_{i \in \text{processRegion}} w_i \cdot \phi_i \cdot \text{field}_i
* \f]
*
* The summation can be further filtered using an includeMask to selectively include only
* specific particles that satisfy certain criteria.
*
* This class supports the following field types:
* - real (scalar values)
* - realx3 (vector values)
* - realx4 (tensor values)
*
* @section usage Usage
*
* To use the PostprocessOperationSum class in a postprocessDataDict file, the following
* parameters can be specified:
*
* - function: Must be set to "sum" to use this operation
* - field: The name of the field to process (e.g., "velocity", "diameter", "one")
* - Special fields like "one" (constant value 1) are also supported
* - Expressions like "cube(diameter)" can be used for mathematical operations
* - dividedByVolume: Whether to divide the sum by the region volume (yes/no, default: no)
* - includeMask: Optional mask to filter which particles to include in the calculation
*
* @section example Example Configuration
*
* Here is an example configuration in the postprocessDataDict file:
*
* @code
* {
* processMethod arithmetic;
* processRegion line;
*
* // the time interval for executing the post-processing
* // other options: timeStep, default, and settings
* timeControl simulationTime;
* startTime 1.0;
* endTime 3.0;
* executionInterval 0.1;
*
* // 10 spheres with radius 0.01 along the straight line defined by p1 and p2
* lineInfo
* {
* p1 (0 0 0);
* p2 (0 0.15 0.15);
* numPoints 10;
* radius 0.01;
* }
*
* operations
* (
* // computes the number density (particles per unit volume)
* numberDensity
* {
* function sum;
* field one; // constant field with value 1.0
* dividedByVolume yes; // divide by region volume
* }
*
* // computes an approximation of volume fraction
* volumeDensity
* {
* function sum;
* field cube(diameter); // d^3, although it differs by pi/6
* dividedByVolume yes;
* }
* );
* }
* @endcode
*
* In this example:
* - numberDensity: Calculates the number of particles per unit volume
* - volumeDensity: Calculates an approximation of the volume fraction using d³
*
* @see postprocessOperation
* @see executeSumOperation
*/
#include <variant>
#include <vector>
@ -37,21 +138,26 @@ class PostprocessOperationSum
public postprocessOperation
{
private:
/// Pointer to the include mask used for masking operations.
/// Result field containing sums for each region (real, realx3, or realx4)
uniquePtr<processedRegFieldType> processedRegField_ = nullptr;
public:
TypeInfo("PostprocessOperation<sum>");
/// @brief Constructs sum operation processor
/// @param opDict Operation parameters dictionary
/// @param regPoints Region points data
/// @param fieldsDB Fields database
PostprocessOperationSum(
const dictionary& opDict,
const regionPoints& regPoints,
fieldsDataBase& fieldsDB);
/// destructor
~PostprocessOperationSum() override = default;
/// add this virtual constructor to the base class
add_vCtor
(
postprocessOperation,
@ -59,11 +165,16 @@ public:
dictionary
);
/// @brief Get the processed field containing regional sums
/// @return Const reference to sum results
const processedRegFieldType& processedField()const override
{
return processedRegField_();
}
/// @brief Execute sum operation on field values
/// @param weights Weight factors for particles
/// @return True if successful
bool execute(const std::vector<span<real>>& weights) override;
};
@ -71,4 +182,4 @@ public:
}
#endif //__PostprocessOperation_hpp__
#endif //__PostprocessOperationSum_hpp__

View File

@ -31,7 +31,6 @@ Licence:
namespace pFlow
{
template<typename T>
regionField<T> executeSumOperation
(
@ -45,13 +44,14 @@ regionField<T> executeSumOperation
)
{
regionField<T> processedField(regFieldName, regPoints, T{});
auto vols = regPoints.volumes();
for(uint32 reg =0; reg<regPoints.size(); reg++)
{
auto partIndices = regPoints.indices(reg);
auto vols = regPoints.volumes();
auto w = weights[reg];
T sum{};
T sum = T{};
uint n = 0;
for(auto index:partIndices)
{
@ -80,33 +80,106 @@ regionField<T> executeAverageOperation
(
const word& regFieldName,
const span<T>& field,
const regionPoints& regPoints,
const regionPoints& regPoints,
const bool devideByVol,
const std::vector<span<real>>& weights,
const span<real>& phi,
const includeMask::Mask& mask
)
{
regionField<T> processedField(regFieldName, regPoints, T{});
auto vols = regPoints.volumes();
for(uint32 reg =0; reg<regPoints.size(); reg++)
{
auto partIndices = regPoints.indices(reg);
auto w = weights[reg];
T sumNum{};
real sumDen{};
T sumNum = T{};
real sumDen = 0;
uint n = 0;
for(auto index:partIndices)
{
if( index!= -1 && mask( index ))
if( index!= -1)
{
sumNum += w[n] * field[index]* phi[index];
if( mask(index))
{
sumNum += w[n] * field[index]* phi[index];
}
sumDen += w[n] * phi[index];
}
sumDen += w[n] * phi[index];
n++;
}
if(devideByVol)
{
processedField[reg] = sumNum / max(sumDen, smallValue) / vols[reg];
}
else
{
processedField[reg] = sumNum / max(sumDen, smallValue);
}
}
sumDen = max(sumDen, smallValue);
processedField[reg] = sumNum/sumDen;
return processedField;
}
template<typename T>
regionField<T> executeFluctuation2Operation
(
const word& regFieldName,
const span<T>& field,
const regionField<T>& fieldAvg,
const bool devideByVol,
const std::vector<span<real>>& weights,
const includeMask::Mask& mask
)
{
const auto& regPoints = fieldAvg.regPoints();
regionField<T> processedField(regFieldName, regPoints, T{});
auto vols = regPoints.volumes();
for(uint32 reg =0; reg<regPoints.size(); reg++)
{
auto partIndices = regPoints.indices(reg);
auto w = weights[reg];
auto vol = vols[reg];
T avField{};
if(devideByVol)
{
avField = vol * fieldAvg[reg];
}
else
{
avField = fieldAvg[reg];
}
T sumNum = T{};
real sumDen = 0;
uint n = 0;
for(auto index:partIndices)
{
if( index!= -1)
{
if( mask(index))
{
sumNum += w[n] * pow( avField- field[index],static_cast<real>(2));
}
sumDen += w[n];
}
n++;
}
if(devideByVol)
{
processedField[reg] = sumNum / max(sumDen, smallValue) / vol;
}
else
{
processedField[reg] = sumNum / max(sumDen, smallValue);
}
}

View File

@ -33,11 +33,21 @@ pFlow::includeMask::includeMask
database_(fieldDB)
{}
pFlow::includeMask::includeMask
(
const word &type,
const dictionary &opDict,
fieldsDataBase &fieldsDB
)
:
database_(fieldsDB)
{
}
pFlow::uniquePtr<pFlow::includeMask> pFlow::includeMask::create
(
const dictionary& opDict,
fieldsDataBase& feildsDB
fieldsDataBase& fieldsDB
)
{
word mask = opDict.getValOrSet<word>("includeMask", "all");
@ -47,7 +57,7 @@ pFlow::uniquePtr<pFlow::includeMask> pFlow::includeMask::create
auto& maskDict = opDict.subDict(mask+"Info");
word maskField = maskDict.getVal<word>("field");
if( !feildsDB.getPointFieldType(maskField, fieldType) )
if( !fieldsDB.getPointFieldType(maskField, fieldType) )
{
fatalErrorInFunction<<"Error in retriving the type of field"
<< maskField <<" from dictionary "
@ -68,7 +78,7 @@ pFlow::uniquePtr<pFlow::includeMask> pFlow::includeMask::create
{
auto objPtr =
dictionaryvCtorSelector_[method]
(opDict, feildsDB);
(opDict, fieldsDB);
return objPtr;
}
else
@ -87,5 +97,56 @@ pFlow::uniquePtr<pFlow::includeMask> pFlow::includeMask::create
return nullptr;
}
pFlow::uniquePtr<pFlow::includeMask>
pFlow::includeMask::create
(
const word &type,
const dictionary &opDict,
fieldsDataBase &fieldsDB
)
{
word fieldType;
if( type != "all")
{
auto& maskDict = opDict.subDict(type+"Info");
word maskField = maskDict.getVal<word>("field");
if( !fieldsDB.getPointFieldType(maskField, fieldType) )
{
fatalErrorInFunction<<"Error in retriving the type of field"
<< maskField <<" from dictionary "
<< maskDict.globalName()
<< endl;
fatalExit;
return nullptr;
}
}
else
{
fieldType = getTypeName<real>();
}
word method = angleBracketsNames2("IncludeMask", fieldType, type);
if( wordvCtorSelector_.search(method) )
{
auto objPtr =
wordvCtorSelector_[method]
(type, opDict, fieldsDB);
return objPtr;
}
else
{
printKeys
(
fatalError << "Ctor Selector "<<
method << " dose not exist. \n"
<<"Avaiable ones are: \n\n"
,
dictionaryvCtorSelector_
);
fatalExit;
return nullptr;
}
return nullptr;
}

View File

@ -74,6 +74,8 @@ public:
includeMask(const dictionary& opDict, fieldsDataBase& feildsDB);
includeMask(const word& type, const dictionary& opDict, fieldsDataBase& feildsDB);
virtual ~includeMask() = default;
create_vCtor
@ -85,6 +87,18 @@ public:
),
(opDict, feildsDB)
);
create_vCtor
(
includeMask,
word,
(
const word& type,
const dictionary& opDict,
fieldsDataBase& feildsDB
),
(type, opDict, feildsDB)
);
const fieldsDataBase& database()const
{
@ -103,6 +117,12 @@ public:
uniquePtr<includeMask> create(
const dictionary& opDict,
fieldsDataBase& feildsDB);
static
uniquePtr<includeMask> create(
const word& type,
const dictionary& opDict,
fieldsDataBase& feildsDB);
};

View File

@ -82,14 +82,33 @@ bool writeField
}
pFlow::postprocessOperation::postprocessOperation
(
const dictionary &opDict,
const regionPoints& regPoints,
fieldsDataBase &fieldsDB
)
:
postprocessOperation
(
opDict,
opDict.getVal<word>("field"),
opDict.getValOrSet<word>("phi", "one"),
opDict.getValOrSet<word>("includeMask", "all"),
regPoints,
fieldsDB
)
{}
pFlow::postprocessOperation::postprocessOperation
(
const dictionary &opDict,
const word &fieldName,
const word &phiName,
const word& includeName,
const regionPoints &regPoints,
fieldsDataBase &fieldsDB
)
:
operationDict_(opDict),
threshold_
@ -110,15 +129,15 @@ pFlow::postprocessOperation::postprocessOperation
),
fieldName_
(
opDict.getValOrSet<word>("field", "one")
fieldName
),
phiFieldName_
(
opDict.getValOrSet<word>("phi", "one")
phiName
),
includeMask_
(
includeMask::create(opDict, fieldsDB)
includeMask::create(includeName, opDict, fieldsDB)
)
{
@ -128,7 +147,6 @@ pFlow::postprocessOperation::postprocessOperation
fatalExit;
}
}
const pFlow::Time& pFlow::postprocessOperation::time() const
{
return database_.time();

View File

@ -20,6 +20,53 @@ Licence:
#ifndef __postprocessOperation_hpp__
#define __postprocessOperation_hpp__
/*!
* @class postprocessOperation
* @file postprocessOperation.hpp
* @brief Base class for post-processing operations on particle data.
* This class provides the foundational structure and functionality
* for performing various post-processing operations on simulation data.
*
* @details
* The postprocessOperation class operates on field data (specified in the input dictionary)
* and performs specific operations on that field within defined regions. It serves as
* part of the post-processing framework in phasicFlow to analyze particle simulation results.
*
* Operations are performed on specific subsets of particles defined by region points and
* can be filtered using include masks. The class supports different field types (real,
* realx3, realx4) through the processedRegFieldType variant.
*
* The main operations supported include:
*
* 1. Sum operation:
* - Calculates:
* \f[
* \text{result} = \sum_{i \in \text{processRegion}} w_i \cdot \phi_i \cdot \text{field}_i
* \f]
* - Where \f$ i \f$ belongs to the particles in the specified processRegion
* - \f$ w_i \f$ is the weight factor for particle \f$ i \f$
* - \f$ \phi_i \f$ is the value from the phi field for particle \f$ i \f$
* - \f$ \text{field}_i \f$ is the value from the target field for particle \f$ i \f$
* - Implemented in the derived class PostprocessOperationSum
*
* 2. Average operation:
* - Calculates:
* \f[
* \text{result} = \frac{\sum_{j \in \text{includeMask}} w_j \cdot \phi_j \cdot \text{field}_j}
* {\sum_{i \in \text{processRegion}} w_i \cdot \phi_i}
* \f]
* - Where \f$ i \f$ belongs to all particles in the specified processRegion
* - \f$ j \f$ belongs to a subset of \f$ i \f$ based on an includeMask defined in the input dictionary
* - This allows calculating regional averages on specific subsets of particles
*
* The class uses threshold values to exclude regions with insufficient particles
* and supports optional division by volume for density-like calculations. Results are written
* to files for later analysis or visualization.
*
* @note The actual processing is performed by derived classes that implement
* the execute() method for specific operation types.
*/
#include <variant>
#include "virtualConstructor.hpp"
@ -33,6 +80,9 @@ Licence:
namespace pFlow
{
/// Type alias for processed region field types.
/// Only regionField<real>, regionField<realx3>, and regionField<realx4> are supported
/// in the postprocessOperation class.
using processedRegFieldType = std::variant
<
regionField<real>,
@ -40,14 +90,10 @@ using processedRegFieldType = std::variant
regionField<realx4>
>;
/// - forward declaration
class fieldsDataBase;
class Time;
/*!
* @brief Base class for post-processing operations.
* This class provides the basic structure and functionality
* for performing post-processing operations on simulation data.
*/
class postprocessOperation
{
public:
@ -88,16 +134,31 @@ private:
public:
/// Type info
TypeInfo("postprocessOperation");
/// Constructor
/// @param opDict Dictionary containing operation-specific parameters.
/// @param regPoints Reference to the region points used in the operation.
/// @param fieldsDB Reference to the fields database containing field data.
postprocessOperation(
const dictionary& opDict,
const regionPoints& regPoints,
fieldsDataBase& fieldsDB );
postprocessOperation(
const dictionary& opDict,
const word& fieldName,
const word& phiName,
const word& includeName,
const regionPoints& regPoints,
fieldsDataBase& fieldsDB
);
/// destructor
virtual ~postprocessOperation()=default;
/// Active the virtual constructor for creating derived classes.
create_vCtor(
postprocessOperation,
dictionary,
@ -108,74 +169,99 @@ public:
),
(opDict, regPoints, fieldsDB));
/// Access to regionPoints instance
const regionPoints& regPoints()const
{
return regionPoints_;
}
/// Access to fields database instance
const fieldsDataBase& database()const
{
return database_;
}
/// Access to fields database instance
fieldsDataBase& database()
{
return database_;
}
/// Access to the time instance
const Time& time()const;
/// Return the name of the processed field.
word processedFieldName()const
{
return operationDict_.name();
}
/// return the name of the field to be processed.
const word& fieldName()const
{
return fieldName_;
}
/// return the type name of the field to be processed.
const word& fieldType()const
{
return fieldType_;
}
/// return the name of the phi field to be processed.
const word& phiFieldName()const
{
return phiFieldName_;
}
/// Access to the operation dictionary
const dictionary& operationDict()const
{
return operationDict_;
}
/// return threshold value
/// which is used to exclude the regions which contain
/// particles fewer than this value.
const uint32 threshold()const
{
return threshold_;
}
/// whether the result is divided by volume of the region
bool divideByVolume()const
{
return divideByVolume_();
}
/// return the include mask
Mask getMask()
{
return includeMask_().getMask();
}
/// return the processed field
virtual
const processedRegFieldType& processedField()const=0;
virtual
bool execute(const std::vector<span<real>>& weights) = 0;
/// execute the operation
/// @param weights Vector of weights for the operation.
virtual bool execute(const std::vector<span<real>>& weights) = 0;
/// write the result to a file
/// @param parDir Parent directory for the output file.
virtual
bool write(const fileSystem &parDir)const;
/// write the result to output stream (possibly a file)
/// @param os Output stream to write the result.
virtual
bool write(iOstream& os)const {return true;}
/// Create the polymorphic object using the virtual constructor.
/// @param opDict Dictionary containing operation-specific parameters.
/// @param regPoints Reference to the region points used in the operation.
/// @param fieldsDB Reference to the fields database containing field data.
static
uniquePtr<postprocessOperation> create(
const dictionary& opDict,

View File

@ -67,6 +67,10 @@ bool pFlow::PostprocessComponent<RegionType, ProcessMethodType>::execute
return true;
}
REPORT(1)<<"Executing postprocess component ("
<<Blue_Text(ti.timeName())<<" s) : "
<< name()
<<END_REPORT;
// update processing methods
auto& regPoints = this->regPoints();

View File

@ -92,7 +92,12 @@ bool pFlow::particleProbePostprocessComponent::execute
executed_ = false;
return true;
}
REPORT(1)<<"Executing postprocess component ("
<<Blue_Text(ti.timeName())<<" s) : "
<< name()
<<END_REPORT;
if(!regionPointsPtr_().update())
{
fatalErrorInFunction

View File

@ -40,14 +40,16 @@ pFlow::postprocessData::postprocessData(const systemControl &control)
objectFile::READ_IF_PRESENT,
objectFile::WRITE_NEVER
)
),
componentsDicts_(readDictList("components", dict_))
)
{
postProcessGlobals::defaultDir__ = CWD()/pFlow::postProcessGlobals::defaultRelDir__;
// if dictionary is not provided, no extra action is required.
if( !dict_.fileExist() )
if( !dict_.fileExist() || !dict_.headerOk() )
{
WARNING<<"You requested postprocessData function while,"
<<" the dictionary system/postprocessDataDict does not exist."
<<" This feature is disabled in the current run."<<END_WARNING;
return;
}
@ -72,7 +74,9 @@ pFlow::postprocessData::postprocessData(const systemControl &control)
"execution");
}
for(auto& compDict:componentsDicts_)
componentsDictsPtr_ = makeUnique<dictionaryList>(readDictList("components", dict_));
for(auto& compDict:*componentsDictsPtr_)
{
postprocesses_.push_back( postprocessComponent::create(
compDict,

View File

@ -63,7 +63,7 @@ class postprocessData
fileDictionary dict_;
/// list of dictionaries for postprocess components
dictionaryList componentsDicts_;
uniquePtr<dictionaryList> componentsDictsPtr_ = nullptr;
/// @brief default time control that can be used for all post-process components
uniquePtr<baseTimeControl> defaultTimeControlPtr_= nullptr;

View File

@ -31,6 +31,22 @@ namespace pFlow
template<typename T>
class regionField
{
public:
using FieldType = Field<T, HostSpace>;
using iterator = typename FieldType::iterator;
using const_iterator = typename FieldType::const_iterator;
using reference = typename FieldType::reference;
using const_reference = typename FieldType::const_reference;
using value_type = typename FieldType::value_type;
using pointer = typename FieldType::pointer;
using const_pointer = typename FieldType::const_pointer;
private:
/// the field value

View File

@ -26,6 +26,34 @@ Licence:
namespace pFlow
{
/**
* @class centerPointsRegionPoints
* @brief A region points implementation that selects particles based on their IDs
*
* This class is responsible for selecting points (particles) by their IDs from
* a simulation database and tracking their properties. It maintains information
* about the selected particles including their positions, volumes, and diameters.
*
* The selection is performed based on IDs provided in the input dictionary.
* Once selected, the particles' properties can be accessed through various
* methods. The update method allows refreshing the selection when particle data
* changes. The selection occurs at startTime defined in the time control, and
* there are some methods for selecting ids:
* - specifying ids
* - using selectors specified in pStructSelector class, which includes:
* - box: selects particles within a box region
* - sphere: selects particles within a spherical region
* - cylinder: selects particles within a cylindrical region
* - random: randomly selects a specified number of particles
* - strided: selects particles with a specified stride pattern
*
* This class is useful for tracking specific particles of interest throughout
* a simulation and analyzing their behavior.
*
* @see regionPoints Base class providing the interface for different region
* point selections
* @see pStructSelector Class providing different particle selection methods
*/
class centerPointsRegionPoints
:
public regionPoints
@ -59,6 +87,7 @@ private:
public:
/// Type info
TypeInfo("centerPoints");
centerPointsRegionPoints(
@ -67,50 +96,69 @@ public:
~centerPointsRegionPoints() override = default;
/// @brief Returns the number of selected points/particles
/// @return Number of selected points/particles
uint32 size()const override
{
return selectedPoints_.size();
}
/// @brief Checks if there are no selected points
/// @return True if no points are selected, false otherwise
bool empty()const override
{
return selectedPoints_.empty();
}
/// @brief Returns the volumes of the selected points (this is normally not used)
span<const real> volumes()const override
{
return span<const real>(volume_.data(), volume_.size());
}
span<const real> eqDiameters()const override
/// @brief Returns the equivalent diameters of the regions (this is normally not used )
span<const real> eqDiameters()const override
{
return span<const real>(diameter_.data(), diameter_.size());
}
/// @brief Returns the center positions of the selected points
/// @return Span containing the center positions of all selected points
span<const realx3> centers()const override
{
return span<const realx3>(center_.data(), center_.size());
}
/// @brief Returns the indices of the selected points (const version)
/// @param elem Element index (not used in this implementation)
/// @return Span containing the indices of all selected points
span<const uint32> indices(uint32 elem)const override
{
return span<const uint32>(selectedPoints_.data(), selectedPoints_.size());
}
/// @brief Returns the indices of the selected points (non-const version)
/// @param elem Element index (not used in this implementation)
/// @return Span containing the indices of all selected points
span<uint32> indices(uint32 elem) override
{
return span<uint32>(selectedPoints_.data(), selectedPoints_.size());
}
/// @brief update the selected points based on the ids
/// @return true if the operation is successful
/// @brief Updates the selected points based on the particle IDs
/// @return True if the operation is successful, false otherwise
bool update() override;
/// @brief Checks if the data should be written to the same time file
/// @return True if data should be written to the same time file, false otherwise
bool writeToSameTimeFile()const override
{
return true;
}
/// @brief Writes the data to the output stream
/// @param os Output stream
/// @return True if the operation is successful, false otherwise
bool write(iOstream& os)const override;
}; // class centerPointsRegionPoints

View File

@ -30,7 +30,8 @@ pFlow::lineRegionPoints::lineRegionPoints
if(raddi.size() != nPoints)
{
fatalErrorInFunction
<< "The number elements in of radii list should be equal to the number of points"<<endl;
<< "The number elements in of radii list should be equal to the "
<< "number of points"<<endl;
fatalExit;
}
@ -50,7 +51,7 @@ pFlow::lineRegionPoints::lineRegionPoints
pFlow::span<const pFlow::uint32> pFlow::lineRegionPoints::indices(uint32 elem) const
{
if(elem>=size())
if(elem >= size())
{
fatalErrorInFunction
<< "The element index is out of range. elem: " << elem
@ -58,13 +59,15 @@ pFlow::span<const pFlow::uint32> pFlow::lineRegionPoints::indices(uint32 elem) c
fatalExit;
}
return span<const uint32>(selectedPoints_[elem].data(), selectedPoints_[elem].size());
return span<const uint32>(
selectedPoints_[elem].data(),
selectedPoints_[elem].size());
}
bool pFlow::lineRegionPoints::update()
{
const auto points = database().updatePoints();
for(auto& elem:selectedPoints_)
for(auto& elem : selectedPoints_)
{
elem.clear();
}
@ -84,17 +87,18 @@ bool pFlow::lineRegionPoints::update()
bool pFlow::lineRegionPoints::write(iOstream &os) const
{
os <<"# Spheres along a straight line \n";
os <<"# No."<<tab <<"centerPoint" << tab <<"diameter"<<endl;
for(uint32 i=0; i< sphereRegions_.size(); ++i)
os << "# Spheres along a straight line \n";
os << "# No." << tab << "centerPoint" << tab << "diameter" << endl;
for(uint32 i=0; i < sphereRegions_.size(); ++i)
{
os <<"# "<<i<<tab<<sphereRegions_[i].center() << tab <<diameters_[i] << '\n';
os << "# " << i << tab << sphereRegions_[i].center()
<< tab << diameters_[i] << '\n';
}
os<<"time/No. ";
for(uint32 i=0; i< sphereRegions_.size(); ++i)
os << "time/No. ";
for(uint32 i=0; i < sphereRegions_.size(); ++i)
{
os <<i<<tab;
os << i << tab;
}
os <<endl;
os << endl;
return true;
}

View File

@ -18,14 +18,42 @@ Licence:
-----------------------------------------------------------------------------*/
/**
* @class lineRegionPoints
* @brief Spherical regions along a line for selecting points/particles
*
* The lineRegionPoints class is responsible for selecting points/particles along a
* specified line and creating sphere regions around those points. It partitions
* the line into multiple sphere regions (equally spaced) and keeps track of
* which points/particles in the simulation fall into each region.
*
* This class is used for post-processing data by analyzing distributions of
* particles along a linear path through the simulation domain. It maintains:
* - A line defining the sampling path
* - Spherical regions along this line that include particles
* - Center points for each region
* - Volumes and diameters of regions
* - Indices of points/particles contained in each region
*
* The regions can be updated as the simulation progresses, and the data
* can be written to output for analysis.
*
* @see regionPoints
* @see line
* @see sphere
* @see fieldsDataBase
*/
#ifndef __lineRegionPoints_hpp__
#define __lineRegionPoints_hpp__
#include "regionPoints.hpp"
#include "line.hpp"
#include "sphere.hpp"
#include "Vectors.hpp"
namespace pFlow
{
@ -35,68 +63,80 @@ class lineRegionPoints
{
private:
/// line region for selecting points
/// Line path defining the axis of the spherical regions
line line_;
/// all sphere regions
/// Collection of sphere regions along the line
Vector<sphere> sphereRegions_;
/// center poitns of regions/elements
/// Center points of all spherical regions
realx3Vector centerPoints_;
/// volumes of all elements/regions
/// Volumes of all spherical regions
realVector volumes_;
/// Diameters of all spherical regions
realVector diameters_;
/// the point indices that are selected by this region
/// Point/particles indices selected by each region
Vector<uint32Vector> selectedPoints_;
public:
/// Type information for runtime type identification
TypeInfo(line::TYPENAME());
/// Construct from dictionary that contains lineInfo and fields database
lineRegionPoints(
const dictionary& dict,
fieldsDataBase& fieldsDataBase);
/// Default destructor
~lineRegionPoints() override = default;
/// Return number of regions
uint32 size()const override
{
return sphereRegions_.size();
}
/// Check if regions list is empty
bool empty()const override
{
return sphereRegions_.empty();
}
/// Return volumes of all regions
span<const real> volumes()const override
{
return span<const real>(volumes_.data(), volumes_.size());
}
/// Return equivalent diameters of all regions
span<const real> eqDiameters()const override
{
return span<const real>(diameters_.data(), diameters_.size());
}
/// Return center points of all regions
span<const realx3> centers()const override
{
return span<const realx3>(centerPoints_.data(), centerPoints_.size());
}
/// Return indices of points in the specified element/region
span<const uint32> indices(uint32 elem)const override;
/// Update regions based on current particle positions
bool update() override;
/// Whether to write all data to the same time file
bool writeToSameTimeFile()const override
{
return true;
}
/// Write data to output stream
bool write(iOstream& os) const override;
};

View File

@ -32,27 +32,43 @@ namespace pFlow
class fieldsDataBase;
class Time;
/**
* @class regionPoints
* @brief Abstract base class for managing and processing volumetric regions
* in the simulation. Particles are selected based on their positions within
* these defined regions.
*
* This class provides an interface for accessing and manipulating data
* related to regions of points (particles), including their volumes, equivalent
* diameters, center points, and particle indices that they contain. It interacts with the
* fieldsDataBase and Time classes to retrieve simulation data.
*/
class regionPoints
{
using PointsTypeHost = typename pointStructure::PointsTypeHost;
using PointsTypeHost = typename pointStructure::PointsTypeHost;
/// Reference to the fields database containing simulation data
fieldsDataBase& fieldsDataBase_;
public:
TypeInfo("regionPoints");
/// Constructor with dictionary and fields database reference
regionPoints(
const dictionary& dict,
fieldsDataBase& fieldsDataBase);
/// Default virtual destructor
virtual ~regionPoints() = default;
/// Returns reference to the time object from the database
const Time& time()const;
/// Returns const reference to the fields database
const fieldsDataBase& database()const;
/// Returns non-const reference to the fields database
fieldsDataBase& database();
/// @brief size of elements
@ -61,11 +77,7 @@ public:
/// @brief check if the region is empty
virtual
bool empty()const = 0;
/*/// @brief return the type of the region
virtual const word& type()const = 0;*/
bool empty()const = 0;
/// @brief volume of elements
/// @return sapn for accessing the volume of elements
@ -75,30 +87,29 @@ public:
virtual
span<const real> eqDiameters()const = 0;
/// center points of elements
/// center points of elements
virtual
span<const realx3> centers()const = 0;
/// indices of particles inside the element @var elem
/// Returns const span of particle indices inside the specified element region
virtual
span<const uint32> indices(uint32 elem)const = 0;
/// Returns non-const span of particle indices inside the specified element region
virtual
span<uint32> indices(uint32 elem) = 0;
/// Updates the points (particles) inside regions based on current particle positions
virtual
bool update() = 0;
/// Returns true if the region should be written to the same time file
virtual
bool writeToSameTimeFile()const = 0;
/// Writes region data to the output stream
virtual
bool write(iOstream& os)const=0;
/*static
uniquePtr<regionPoints> create(
const dictionary& dict,
fieldsDataBase& fieldsDataBase);*/
};

View File

@ -18,6 +18,19 @@ Licence:
-----------------------------------------------------------------------------*/
/**
* @file sphereRegionPoints.hpp
* @brief A class representing a spherical region for point selection
*
* This class provides functionality to select points within a spherical region
* and to compute related properties such as volume and equivalent diameter.
* It inherits from regionPoints and implements all required virtual methods.
*
* @see regionPoints
* @see sphere
* @see fieldsDataBase
*/
#ifndef __sphereRegionPoints_hpp__
#define __sphereRegionPoints_hpp__
@ -27,75 +40,127 @@ Licence:
namespace pFlow
{
class sphereRegionPoints
:
public regionPoints
{
private:
/// spehre region for selecting points
/// Sphere object defining the region for point selection
sphere sphereRegion_;
/// the volume of region
/// Volume of the spherical region
real volume_;
/// Diameter of the spherical region
real diameter_;
/// the point indices that are selected by this region
/// Indices of points that are selected by this region
uint32Vector selectedPoints_;
public:
TypeInfo(sphere::TYPENAME());
/**
* @brief Construct a spherical region for point selection
*
* @param dict Dictionary containing sphereInfo dictionary
* @param fieldsDataBase Database containing fields data
*/
sphereRegionPoints(
const dictionary& dict,
fieldsDataBase& fieldsDataBase);
/// Destructor
~sphereRegionPoints() override = default;
/**
* @brief Get the number of regions (always 1 for sphere)
* @return Always returns 1
*/
uint32 size()const override
{
return 1;
}
/**
* @brief Check if the region is empty
* @return Always returns false
*/
bool empty()const override
{
return false;
}
/**
* @brief Get the volume of the spherical region
* @return A span containing the volume of the region
*/
span<const real> volumes()const override
{
return span<const real>(&volume_, 1);
}
/**
* @brief Get the equivalent diameter of the spherical region
* @return A span containing the diameter of the region
*/
span<const real> eqDiameters()const override
{
return span<const real>(&diameter_, 1);
}
/**
* @brief Get the center of the spherical region
* @return A span containing the center point of the region
*/
span<const realx3> centers()const override
{
return span<const realx3>(&sphereRegion_.center(), 1);
}
/**
* @brief Get the indices of points within the region (const version)
* @param elem Element index (ignored as there's only one sphere)
* @return A span containing indices of points within the region
*/
span<const uint32> indices(uint32 elem)const override
{
return span<const uint32>(selectedPoints_.data(), selectedPoints_.size());
}
/**
* @brief Get the indices of points within the region (non-const version)
* @param elem Element index (ignored as there's only one sphere)
* @return A span containing indices of points within the region
*/
span<uint32> indices(uint32 elem) override
{
return span<uint32>(selectedPoints_.data(), selectedPoints_.size());
}
/**
* @brief Update the points selected by this region
* @return True if update was successful
*/
bool update()override;
/**
* @brief Determine if data should be written to the same time file
* @return Always returns true
*/
bool writeToSameTimeFile()const override
{
return true;
}
/**
* @brief Write region data to output stream
* @param os Output stream to write to
* @return True if write was successful
*/
bool write(iOstream& os)const override;
};

View File

@ -2,107 +2,128 @@
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName processDataDict;
objectType dictionary;;
fileFormat ASCII;
objectName postprocessDataDict;
objectType dictionary;;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
runTimeActive yes;
runTimeActive yes;
defaultTimeControl
{
timeControl;
startTime;
endTime;
actionInterval 0.05;
timeControl timeStep;
startTime 0;
endTime 1000;
executionInterval 150;
}
components
(
velocityProb
{
method particleProbe;
region idSelecttion;
field velocity;
ids (0 10 100);
timeControl timeStep;
startTime 0;
endTime infinity;
probInterval 1;
}
velocityProb
{
processMethod particleProbe;
processRegion centerPoints;
selector id;
field component(position,y);
ids (0 10 100);
}
onSingleSphere
{
// method of performing the sum (arithmetic, uniformDistribution, GaussianDistribution)
processMethod arithmetic;
processRegion sphere; // type of region on which processing is performed
sphereInfo
{
radius 0.01;
center (-0.08 -0.08 0.015);
}
timeControl default; // settings, timeStep, simulationTime
/// all the post process operations to be done
operations
(
// computes the arithmetic mean of particle velocity
averageVel
{
function average;
field velocity;
dividedByVolume no; //default
threshold 3; //default is 1;
includeMask all;
}
// computes the fraction of par1 in the region
par1Fraction
{
function average;
field one;
phi one; // default
dividedByVolume no;
includeMask lessThan;
// diameter of par1 is 0.003, so these settings
// will select only particles of type par1
lessThanInfo
{
field diameter;
value 0.0031;
}
}
comp2
{
method uniformDistribution;
region spehre;
sphereInfo
{
radius 0.01;
center ();
}
timeControl default; //default;
operations
(
numParticle
{
function sum;
field compoenent(velocity,x);
phi square(mass);
divideByVol no; //default
threshold 1; //default;
defaultVal NaN;
//includeMask all; //default;
includeMask lessThan;
lessThanInfo
{
field diameter;
value 0.003;
}
}
);
numberDensity
{
function sum;
field one;
phi one; // default
dividedByVolume yes;
}
);
}
comp3
alongALine
{
region line;
lineInfo
{
p1 ();
p2 ();
processMethod arithmetic;
processRegion line;
// the time interval for executing the post-processing
// other options: timeStep, default, and settings
timeControl simulationTime;
startTime 1.0;
endTime 3.0;
executionInterval 0.1;
// 10 spheres with radius 0.01 along the straight line defined by p1 and p2
lineInfo
{
p1 (0 0 0);
p2 (0 0.15 0.15);
numPoints 10;
radius 0.01;
}
timeControl settingsDict; //default;
type numberBased;
operations();
radius 0.01;
}
operations
(
// computes the arithmetic mean of particle velocity
numberDensity
{
function sum;
field one;
dividedByVolume yes; //default is no
}
volumeDensity
{
function sum;
field cube(diameter); // d^3, although it differs by pi/6
dividedByVolume yes; //default is no
}
);
}
comp4
{
type GaussianDistribution;
region hexMesh; // unstructuredMehs;
hexMeshInfo
{
min (-0.3 -1.4 -0.01);
max ( 0.3 2 0.48 );
nx 30; // number of divisions in x direction
ny 160; // number of divisions in y direction
nz 24; // number of divisions in z direction
}
timeControl settingsDict; // read from settingsDict
operations
(
avVelocity
{
type average;
field realx3 velocity; // default to real 1.0
divideByVol no; // default
threshold 1; //default;
includeMask all; //default;
}
);
}
);
);