adding non-linear contact force model for grains

This commit is contained in:
Hamidreza Norouzi 2025-01-20 15:37:48 +03:30
parent c202f9eaae
commit 967bb753aa
4 changed files with 334 additions and 43 deletions

View File

@ -0,0 +1,307 @@
/*------------------------------- phasicFlow ---------------------------------
O C enter of
O O E ngineering and
O O M ultiscale modeling of
OOOOOOO F luid flow
------------------------------------------------------------------------------
Copyright (C): www.cemf.ir
email: hamid.r.norouzi AT gmail.com
------------------------------------------------------------------------------
Licence:
This file is part of phasicFlow code. It is a free software for simulating
granular and multiphase flows. You can redistribute it and/or modify it under
the terms of GNU General Public License v3 or any other later versions.
phasicFlow is distributed to help others in their research in the field of
granular and multiphase flows, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-----------------------------------------------------------------------------*/
#ifndef __cGNonLinearCF_hpp__
#define __cGNonLinearCF_hpp__
#include "types.hpp"
namespace pFlow::cfModels
{
template<bool limited=true>
class cGNonLinear
{
public:
struct contactForceStorage
{
realx3 overlap_t_ = 0.0;
};
struct cGNonLinearProperties
{
real Yeff_ = 1000000.0;
real Geff_ = 8000000.0;
real en_ = 1.0;
real mu_ = 0.00001;
INLINE_FUNCTION_HD
cGNonLinearProperties(){}
INLINE_FUNCTION_HD
cGNonLinearProperties(real Yeff, real Geff, real en, real mu ):
Yeff_(Yeff), Geff_(Geff), en_(en), mu_(mu)
{}
INLINE_FUNCTION_HD
cGNonLinearProperties(const cGNonLinearProperties&)=default;
INLINE_FUNCTION_HD
cGNonLinearProperties& operator=(const cGNonLinearProperties&)=default;
INLINE_FUNCTION_HD
~cGNonLinearProperties() = default;
};
protected:
using cGNonLinearArrayType = symArray<cGNonLinearProperties>;
int32 numMaterial_ = 0;
ViewType1D<real> rho_;
int32 addDissipationModel_;
cGNonLinearArrayType nonlinearProperties_;
bool readNonLinearDictionary(const dictionary& dict)
{
auto Yeff = dict.getVal<realVector>("Yeff");
auto Geff = dict.getVal<realVector>("Geff");
auto nu = dict.getVal<realVector>("nu");
auto en = dict.getVal<realVector>("en");
auto mu = dict.getVal<realVector>("mu");
auto nElem = Yeff.size();
if(nElem != nu.size())
{
fatalErrorInFunction<<
"sizes of Yeff("<<nElem<<") and nu("<<nu.size()<<") do not match.\n";
return false;
}
if(nElem != en.size())
{
fatalErrorInFunction<<
"sizes of Yeff("<<nElem<<") and en("<<en.size()<<") do not match.\n";
return false;
}
if(nElem != mu.size())
{
fatalErrorInFunction<<
"sizes of Yeff("<<nElem<<") and mu("<<mu.size()<<") do not match.\n";
return false;
}
// check if size of vector matchs a symetric array
uint32 nMat;
if( !cGNonLinearArrayType::getN(nElem, nMat) )
{
fatalErrorInFunction<<
"sizes of properties do not match a symetric array with size ("<<
numMaterial_<<"x"<<numMaterial_<<").\n";
return false;
}
else if( numMaterial_ != nMat)
{
fatalErrorInFunction<<
"size mismatch for porperties. \n";
return false;
}
Vector<cGNonLinearProperties> prop("prop",nElem);
ForAll(i,Yeff)
{
prop[i] = {Yeff[i], Geff[i], en[i], mu[i]};
}
nonlinearProperties_.assign(prop);
auto adm = dict.getVal<word>("additionalDissipationModel");
if(adm == "none")
{
addDissipationModel_ = 1;
}
else if(adm == "LU")
{
addDissipationModel_ = 2;
}
else if (adm == "GB")
{
addDissipationModel_ = 3;
}
else
{
addDissipationModel_ = 1;
}
return true;
}
static const char* modelName()
{
if constexpr (limited)
{
return "cGNonLinearLimited";
}
else
{
return "cGNonLinearNonLimited";
}
return "";
}
public:
TypeInfoNV(modelName());
INLINE_FUNCTION_HD
cGNonLinear(){}
cGNonLinear(
int32 nMaterial,
const ViewType1D<real>& rho,
const dictionary& dict)
:
numMaterial_(nMaterial),
rho_("rho",nMaterial),
nonlinearProperties_("cGNonLinearProperties",nMaterial)
{
Kokkos::deep_copy(rho_,rho);
if(!readNonLinearDictionary(dict))
{
fatalExit;
}
}
INLINE_FUNCTION_HD
cGNonLinear(const cGNonLinear&) = default;
INLINE_FUNCTION_HD
cGNonLinear(cGNonLinear&&) = default;
INLINE_FUNCTION_HD
cGNonLinear& operator=(const cGNonLinear&) = default;
INLINE_FUNCTION_HD
cGNonLinear& operator=(cGNonLinear&&) = default;
INLINE_FUNCTION_HD
~cGNonLinear()=default;
INLINE_FUNCTION_HD
int32 numMaterial()const
{
return numMaterial_;
}
//// - Methods
INLINE_FUNCTION_HD
void contactForce
(
const real dt,
const uint32 i,
const uint32 j,
const uint32 propId_i,
const uint32 propId_j,
const real Ri,
const real Rj,
const real cGFi,
const real cGFj,
const real ovrlp_n,
const realx3& Vr,
const realx3& Nij,
contactForceStorage& history,
realx3& FCn,
realx3& FCt
)const
{
const auto prop = nonlinearProperties_(propId_i,propId_j);
const real f = 2.0/( 1.0/cGFi + 1.0/cGFj );
real vrn = dot(Vr, Nij);
realx3 Vt = Vr - vrn*Nij;
history.overlap_t_ += Vt*dt;
real mi = 3*Pi/4*pow(Ri,static_cast<real>(3))*rho_[propId_i];
real mj = 3*Pi/4*pow(Rj,static_cast<real>(3))*rho_[propId_j];
real Reff = 1.0/(1/Ri + 1/Rj);
real K_hertz = 4.0/3.0*prop.Yeff_*sqrt(Reff);
real sqrt_meff_K_hertz = sqrt((mi*mj)/(mi+mj) * K_hertz);
real en = prop.en_;
if (addDissipationModel_==2)
{
en = sqrt(1+((pow(prop.en_,2)-1)*f));
}
else if (addDissipationModel_==3)
{
en = exp((pow(f,1.5)*log(prop.en_)*sqrt( (1-((pow(log(prop.en_),2))/(pow(log(prop.en_),2)+pow(Pi,2))))/(1-(pow(f,3)*(pow(log(prop.en_),2))/(pow(log(prop.en_),2)+pow(Pi,2)))) ) ));
}
real Kn = static_cast<real>(4.0/3.0) * prop.Yeff_ * sqrt(Reff*ovrlp_n);
real ethan_ = -2.0*log(en)*sqrt(Kn)/
sqrt(pow(log(en),2.0)+ pow(Pi,2.0));
FCn = ( - Kn*ovrlp_n -
sqrt_meff_K_hertz*ethan_*pow(ovrlp_n,static_cast<real>(0.25))*vrn)*Nij;
FCt = (f*f)*(- static_cast<real>(8.0) * prop.Geff_ * sqrt(Reff*ovrlp_n) ) * history.overlap_t_;
real ft = length(FCt);
real ft_fric = prop.mu_ * length(FCn);
// apply friction
if(ft > ft_fric)
{
if( length(history.overlap_t_) >0.0)
{
if constexpr (limited)
{
real kt = static_cast<real>(8.0) * prop.Geff_ * sqrt(Reff*ovrlp_n);
FCt *= (ft_fric/ft);
history.overlap_t_ = - FCt/(f*f*kt);
}
else
{
FCt = (FCt/ft)*ft_fric;
}
}
else
{
FCt = 0.0;
}
}
}
};
} //pFlow::CFModels
#endif

View File

@ -26,11 +26,6 @@ Licence:
namespace pFlow::cfModels namespace pFlow::cfModels
{ {
@ -49,16 +44,15 @@ public:
{ {
real kn_ = 1000.0; real kn_ = 1000.0;
real kt_ = 800.0; real kt_ = 800.0;
real en_ = 0.0; real en_ = 1.0;
real ethat_ = 0.0; real mu_ = 0.00001;
real mu_ = 0.00001;
INLINE_FUNCTION_HD INLINE_FUNCTION_HD
linearProperties(){} linearProperties(){}
INLINE_FUNCTION_HD INLINE_FUNCTION_HD
linearProperties(real kn, real kt, real en, real etha_t, real mu ): linearProperties(real kn, real kt, real en, real mu ):
kn_(kn), kt_(kt), en_(en),ethat_(etha_t), mu_(mu) kn_(kn), kt_(kt), en_(en), mu_(mu)
{} {}
INLINE_FUNCTION_HD INLINE_FUNCTION_HD
@ -93,7 +87,6 @@ protected:
auto kn = dict.getVal<realVector>("kn"); auto kn = dict.getVal<realVector>("kn");
auto kt = dict.getVal<realVector>("kt"); auto kt = dict.getVal<realVector>("kt");
auto en = dict.getVal<realVector>("en"); auto en = dict.getVal<realVector>("en");
auto et = dict.getVal<realVector>("et");
auto mu = dict.getVal<realVector>("mu"); auto mu = dict.getVal<realVector>("mu");
@ -114,12 +107,6 @@ protected:
return false; return false;
} }
if(nElem != et.size())
{
fatalErrorInFunction<<
"sizes of kn("<<nElem<<") and et("<<et.size()<<") do not match.\n";
return false;
}
if(nElem != mu.size()) if(nElem != mu.size())
{ {
@ -148,30 +135,16 @@ protected:
} }
realVector etha_t("etha_t", nElem);
ForAll(i , kn)
{
etha_t[i] = -2.0*log( et[i])*sqrt(kt[i]*2/7) /
sqrt(log(pow(et[i],2.0))+ pow(Pi,2.0));
}
Vector<linearProperties> prop("prop", nElem); Vector<linearProperties> prop("prop", nElem);
ForAll(i,kn) ForAll(i,kn)
{ {
prop[i] = {kn[i], kt[i], en[i], etha_t[i], mu[i] }; prop[i] = {kn[i], kt[i], en[i], mu[i] };
} }
linearProperties_.assign(prop); linearProperties_.assign(prop);
auto adm = dict.getVal<word>("additionalDissipationModel");
auto adm = dict.getVal<word>("additionalDissipationModel");
if(adm == "none") if(adm == "none")
{ {
addDissipationModel_ = 1; addDissipationModel_ = 1;
@ -287,22 +260,23 @@ public:
real sqrt_meff = sqrt((mi*mj)/(mi+mj)); real sqrt_meff = sqrt((mi*mj)/(mi+mj));
real en = prop.en_;
if (addDissipationModel_==2) if (addDissipationModel_==2)
{ {
prop.en_ = sqrt(1+((pow(prop.en_,2)-1)*f_)); en = sqrt(1+((pow(prop.en_,2)-1)*f_));
} }
else if (addDissipationModel_==3) else if (addDissipationModel_==3)
{ {
auto pie =3.14;
prop.en_ = exp((pow(f_,1.5)*log(prop.en_)*sqrt( (1-((pow(log(prop.en_),2))/(pow(log(prop.en_),2)+pow(pie,2))))/(1-(pow(f_,3)*(pow(log(prop.en_),2))/(pow(log(prop.en_),2)+pow(pie,2)))) ) )); en = exp((pow(f_,1.5)*log(prop.en_)*sqrt( (1-((pow(log(prop.en_),2))/(pow(log(prop.en_),2)+pow(Pi,2))))/(1-(pow(f_,3)*(pow(log(prop.en_),2))/(pow(log(prop.en_),2)+pow(Pi,2)))) ) ));
} }
real ethan_ = -2.0*log(prop.en_)*sqrt(prop.kn_)/
sqrt(pow(log(prop.en_),2.0)+ pow(Pi,2.0)); real ethan_ = -2.0*log(en)*sqrt(prop.kn_)/
sqrt(pow(log(en),2.0)+ pow(Pi,2.0));
FCn = ( -pow(f_,1.0)*prop.kn_ * ovrlp_n - sqrt_meff * pow(f_,0.5) * ethan_ * vrn)*Nij; FCn = ( -f_*prop.kn_ * ovrlp_n - sqrt_meff * pow(f_,0.5) * ethan_ * vrn)*Nij;
FCt = ( -pow(f_,1.0)*prop.kt_ * history.overlap_t_ - sqrt_meff * pow(f_,0.5) * prop.ethat_*Vt); FCt = ( -f_*prop.kt_ * history.overlap_t_);

View File

@ -23,6 +23,7 @@ Licence:
#include "cGAbsoluteLinearCF.hpp" #include "cGAbsoluteLinearCF.hpp"
#include "cGRelativeLinearCF.hpp" #include "cGRelativeLinearCF.hpp"
#include "cGNonLinearCF.hpp"
#include "grainRolling.hpp" #include "grainRolling.hpp"
@ -38,6 +39,9 @@ using nonLimitedCGAbsoluteLinearGrainRolling = grainRolling<cGAbsoluteLinear<fal
using limitedCGRelativeLinearGrainRolling = grainRolling<cGRelativeLinear<true>>; using limitedCGRelativeLinearGrainRolling = grainRolling<cGRelativeLinear<true>>;
using nonLimitedCGRelativeLinearGrainRolling = grainRolling<cGRelativeLinear<false>>; using nonLimitedCGRelativeLinearGrainRolling = grainRolling<cGRelativeLinear<false>>;
using limitedCGNonLinearGrainRolling = grainRolling<cGNonLinear<true>>;
using nonLimitedCGNonLinearGrainRolling = grainRolling<cGNonLinear<false>>;
} }

View File

@ -41,3 +41,9 @@ Licence:
createBoundaryGrainInteraction(ForceModel, GeomModel) createBoundaryGrainInteraction(ForceModel, GeomModel)
createInteraction(pFlow::cfModels::limitedCGNonLinearGrainRolling, pFlow::rotationAxisMotionGeometry);
createInteraction(pFlow::cfModels::nonLimitedCGNonLinearGrainRolling, pFlow::rotationAxisMotionGeometry);
createInteraction(pFlow::cfModels::limitedCGNonLinearGrainRolling, pFlow::stationaryGeometry);
createInteraction(pFlow::cfModels::nonLimitedCGNonLinearGrainRolling, pFlow::stationaryGeometry);