revise the readme and domainDict

This commit is contained in:
wanqing0421 2025-02-27 23:18:01 +08:00
parent e8e1081345
commit cfd188587c
2 changed files with 148 additions and 173 deletions

View File

@ -1,5 +1,4 @@
# Simulating a small rotating drum {#rotatingDrumSmall} # Problem definition (v-1.0)
## Problem definition (v-1.0)
The problem is to simulate a rotating drum with the diameter 0.24 m and the length 0.1 m rotating at 11.6 rpm. It is filled with 30,000 4-mm spherical particles. The timestep for integration is 0.00001 s. The problem is to simulate a rotating drum with the diameter 0.24 m and the length 0.1 m rotating at 11.6 rpm. It is filled with 30,000 4-mm spherical particles. The timestep for integration is 0.00001 s.
<div align="center"><b> <div align="center"><b>
a view of rotating drum a view of rotating drum
@ -25,27 +24,27 @@ in <b>settings/particlesDict</b> file
```C++ ```C++
positionParticles // positions particles positionParticles // positions particles
{ {
method ordered; // other options: random and empty method ordered; // other options: random and empty
mortonSorting Yes; // perform initial sorting based on morton code? mortonSorting Yes; // perform initial sorting based on morton code?
orderedInfo orderedInfo
{ {
diameter 0.004; // minimum space between centers of particles diameter 0.004; // minimum space between centers of particles
numPoints 30000; // number of particles in the simulation numPoints 30000; // number of particles in the simulation
axisOrder (z y x); // axis order for filling the space with particles axisOrder (z y x); // axis order for filling the space with particles
} }
regionType box; // other options: cylinder and sphere regionType box; // other options: cylinder and sphere
boxInfo // box information for positioning particles boxInfo // box information for positioning particles
{ {
min (-0.08 -0.08 0.015); // lower corner point of the box min (-0.08 -0.08 0.015); // lower corner point of the box
max ( 0.08 0.08 0.098); // upper corner point of the box max ( 0.08 0.08 0.098); // upper corner point of the box
} }
} }
``` ```
In dictionary `setFields`, dictionary `defaultValue` defines the initial value for particle fields (here, `velocity`, `acceleration`, `rotVelocity`, and `shapeName`). Note that `shapeName` field should be consistent with the name of shape that you later set for shapes (here one shape with name `sphere1`). In dictionary `setFields`, dictionary `defaultValue` defines the initial value for particle fields (here, `velocity`, `acceleration`, `rotVelocity`, and `shapeName`). Note that `shapeName` field should be consistent with the name of shape that you later set for shapes (here one shape with name `sphere1`).
@ -55,38 +54,38 @@ in <b>settings/particlesDict</b> file
</div> </div>
```C++ ```C++
defaultValue defaultValue
{ {
velocity realx3 (0 0 0); // linear velocity (m/s) velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2) acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rVelocity realx3 (0 0 0); // rotational velocity (rad/s) rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word sphere1; // name of the particle shape shapeName word sphere1; // name of the particle shape
} }
selectors selectors
{ {
shapeAssigne shapeAssigne
{ {
selector stridedRange; // other options: box, cylinder, sphere, randomPoints selector stridedRange; // other options: box, cylinder, sphere, randomPoints
stridedRangeInfo stridedRangeInfo
{ {
begin 0; // begin index of points begin 0; // begin index of points
end ; // end index of points end ; // end index of points
stride 3; // stride for selector stride 3; // stride for selector
} }
fieldValue // fields that the selector is applied to fieldValue // fields that the selector is applied to
{ {
shapeName word sphere1; // sets shapeName of the selected points to largeSphere shapeName word sphere1; // sets shapeName of the selected points to largeSphere
} }
} }
} }
``` ```
Enter the following command in the terminal to create the particles and store them in `0` folder. Enter the following command in the terminal to create the particles and store them in `0` folder.
@ -105,14 +104,14 @@ motionModel rotatingAxis;
rotatingAxisInfo // information for rotatingAxisMotion motion model rotatingAxisInfo // information for rotatingAxisMotion motion model
{ {
rotAxis rotAxis
{ {
p1 (0.0 0.0 0.0); // first point for the axis of rotation p1 (0.0 0.0 0.0); // first point for the axis of rotation
p2 (0.0 0.0 1.0); // second point for the axis of rotation p2 (0.0 0.0 1.0); // second point for the axis of rotation
omega 1.214; // rotation speed (rad/s) omega 1.214; // rotation speed (rad/s)
} }
} }
``` ```
In the dictionary `surfaces` you can define all the surfaces (walls) in the simulation. Two main options are available: built-in geometries in PhasicFlow, and providing surfaces with stl file. Here we use built-in geometries. In `cylinder` dictionary, a cylindrical shell with end radii, `radius1` and `radius2`, axis end points `p1` and `p2`, `material` name `prop1`, `motion` component `rotAxis` is defined. `resolution` sets number of division for the cylinder shell. `wall1` and `wall2` define two plane walls at two ends of cylindrical shell with coplanar corner points `p1`, `p2`, `p3`, and `p4`, `material` name `prop1` and `motion` component `rotAxis`. In the dictionary `surfaces` you can define all the surfaces (walls) in the simulation. Two main options are available: built-in geometries in PhasicFlow, and providing surfaces with stl file. Here we use built-in geometries. In `cylinder` dictionary, a cylindrical shell with end radii, `radius1` and `radius2`, axis end points `p1` and `p2`, `material` name `prop1`, `motion` component `rotAxis` is defined. `resolution` sets number of division for the cylinder shell. `wall1` and `wall2` define two plane walls at two ends of cylindrical shell with coplanar corner points `p1`, `p2`, `p3`, and `p4`, `material` name `prop1` and `motion` component `rotAxis`.
@ -124,70 +123,70 @@ in <b>settings/geometryDict</b> file
```C++ ```C++
surfaces surfaces
{ {
/* /*
A cylinder with begin and end radii 0.12 m and axis points at (0 0 0) and (0 0 0.1) A cylinder with begin and end radii 0.12 m and axis points at (0 0 0) and (0 0 0.1)
*/ */
cylinder cylinder
{ {
type cylinderWall; // type of the wall type cylinderWall; // type of the wall
p1 (0.0 0.0 0.0); // begin point of cylinder axis p1 (0.0 0.0 0.0); // begin point of cylinder axis
p2 (0.0 0.0 0.1); // end point of cylinder axis p2 (0.0 0.0 0.1); // end point of cylinder axis
radius1 0.12; // radius at p1 radius1 0.12; // radius at p1
radius2 0.12; // radius at p2 radius2 0.12; // radius at p2
resolution 24; // number of divisions resolution 24; // number of divisions
material prop1; // material name of this wall material prop1; // material name of this wall
motion rotAxis; // motion component name motion rotAxis; // motion component name
} }
/* /*
This is a plane wall at the rear end of cylinder This is a plane wall at the rear end of cylinder
*/ */
wall1 wall1
{ {
type planeWall; // type of the wall type planeWall; // type of the wall
p1 (-0.12 -0.12 0.0); // first point of the wall p1 (-0.12 -0.12 0.0); // first point of the wall
p2 ( 0.12 -0.12 0.0); // second point p2 ( 0.12 -0.12 0.0); // second point
p3 ( 0.12 0.12 0.0); // third point p3 ( 0.12 0.12 0.0); // third point
p4 (-0.12 0.12 0.0); // fourth point p4 (-0.12 0.12 0.0); // fourth point
material prop1; // material name of the wall material prop1; // material name of the wall
motion rotAxis; // motion component name motion rotAxis; // motion component name
} }
/* /*
This is a plane wall at the front end of cylinder This is a plane wall at the front end of cylinder
*/ */
wall2 wall2
{ {
type planeWall; // type of the wall type planeWall; // type of the wall
p1 (-0.12 -0.12 0.1); // first point of the wall p1 (-0.12 -0.12 0.1); // first point of the wall
p2 ( 0.12 -0.12 0.1); // second point p2 ( 0.12 -0.12 0.1); // second point
p3 ( 0.12 0.12 0.1); // third point p3 ( 0.12 0.12 0.1); // third point
p4 (-0.12 0.12 0.1); // fourth point p4 (-0.12 0.12 0.1); // fourth point
material prop1; // material name of the wall material prop1; // material name of the wall
motion rotAxis; // motion component name motion rotAxis; // motion component name
} }
} }
``` ```
Enter the following command in the terminal to create the geometry and store it in `0/geometry` folder. Enter the following command in the terminal to create the geometry and store it in `0/geometry` folder.
@ -209,16 +208,16 @@ densities (1000.0); // density of materials [kg/m3]
. .
model model
{ {
contactForceModel nonLinearNonLimited; contactForceModel nonLinearNonLimited;
rollingFrictionModel normal; rollingFrictionModel normal;
Yeff (1.0e6); // Young modulus [Pa] Yeff (1.0e6); // Young modulus [Pa]
Geff (0.8e6); // Shear modulus [Pa] Geff (0.8e6); // Shear modulus [Pa]
nu (0.25); // Poisson's ratio [-] nu (0.25); // Poisson's ratio [-]
en (0.7); // coefficient of normal restitution en (0.7); // coefficient of normal restitution
et (1.0); // coefficient of tangential restitution et (1.0); // coefficient of tangential restitution
mu (0.3); // dynamic friction mu (0.3); // dynamic friction
mur (0.1); // rolling friction mur (0.1); // rolling friction
} }
``` ```
@ -234,15 +233,15 @@ contactListType sortedContactList;
contactSearch contactSearch
{ {
method NBS; // method for broad search method NBS; // method for broad search
updateInterval 10; updateInterval 10;
sizeRatio 1.1; sizeRatio 1.1;
cellExtent 0.55; cellExtent 0.55;
adjustableBox Yes; adjustableBox Yes;
} }
``` ```
@ -254,9 +253,9 @@ in <b>caseSetup/sphereShape</b> file
</div> </div>
```C++ ```C++
names (sphere1); // names of shapes names (sphere1); // names of shapes
diameters (0.004); // diameter of shapes diameters (0.004); // diameter of shapes
materials (prop1); // material names for shapes materials (prop1); // material names for shapes
``` ```
Other settings for the simulation can be set in file `settings/settingsDict`. Other settings for the simulation can be set in file `settings/settingsDict`.
@ -268,30 +267,30 @@ in <b>settings/settingsDict</b> file
```C++ ```C++
run rotatingDrumSmall; run rotatingDrumSmall;
dt 0.00001; // time step for integration (s) dt 0.00001; // time step for integration (s)
startTime 0; // start time for simulation startTime 0; // start time for simulation
endTime 10; // end time for simulation endTime 10; // end time for simulation
saveInterval 0.1; // time interval for saving the simulation saveInterval 0.1; // time interval for saving the simulation
timePrecision 6; // maximum number of digits for time folder timePrecision 6; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2) g (0 -9.8 0); // gravity vector (m/s2)
includeObjects (diameter); // save necessary (i.e., required) data on disk includeObjects (diameter); // save necessary (i.e., required) data on disk
// exclude unnecessary data from saving on disk // exclude unnecessary data from saving on disk
excludeObjects (rVelocity.dy1 pStructPosition.dy1 pStructVelocity.dy1); excludeObjects (rVelocity.dy1 pStructPosition.dy1 pStructVelocity.dy1);
integrationMethod AdamsBashforth2; // integration method integrationMethod AdamsBashforth2; // integration method
writeFormat ascii; // data writting format (ascii or binary) writeFormat ascii; // data writting format (ascii or binary)
timersReport Yes; // report timers (Yes or No) timersReport Yes; // report timers (Yes or No)
timersReportInterval 0.01; // time interval for reporting timers timersReportInterval 0.01; // time interval for reporting timers
``` ```
The dictionary `domain` defines the a rectangular bounding box with two corner points for the simulation. Each particle that gets out of this box, will be deleted automatically. The dictionary `domain` defines the a rectangular bounding box with two corner points for the simulation. Each particle that gets out of this box, will be deleted automatically.
@ -303,59 +302,47 @@ in <b>settings/domainDict</b> file
```C++ ```C++
globalBox // Simulation domain: every particles that goes outside this domain will be deleted globalBox // Simulation domain: every particles that goes outside this domain will be deleted
{ {
min (-0.12 -0.12 0.00); // lower corner point of the box min (-0.12 -0.12 0.00); // lower corner point of the box
max (0.12 0.12 0.11); // upper corner point of the box max (0.12 0.12 0.11); // upper corner point of the box
} }
decomposition decomposition
{ {
direction z; direction z;
} }
boundaries boundaries
{ {
left
{
type exit; // other options: periodic, reflective
}
right
{
type exit; // other options: periodic, reflective
}
neighborListUpdateInterval 50; /* Determines how often (how many iterations) do you want to bottom
{
type exit; // other options: periodic, reflective
}
rebuild the list of particles in the neighbor list top
{
type exit; // other options: periodic, reflective
}
of all boundaries in the simulation domain */ rear
{
type exit; // other options: periodic, reflective
}
updateInterval 10; // Determines how often do you want to update the new changes in the boundary front
{
neighborLength 0.004; // The distance from the boundary plane within which particles are marked to be in the boundary list type exit; // other options: periodic, reflective
}
left
{
type exit; // other options: periodict, reflective
}
right
{
type exit; // other options: periodict, reflective
}
bottom
{
type exit; // other options: periodict, reflective
}
top
{
type exit; // other options: periodict, reflective
}
rear
{
type exit; // other options: periodict, reflective
}
front
{
type exit; // other options: periodict, reflective
}
} }
``` ```
@ -368,4 +355,4 @@ The solver for this simulation is `sphereGranFlow`. Enter the following command
## Post processing ## Post processing
After finishing the simulation, you can render the results in Paraview. To convert the results to VTK format, just enter the following command in the terminal. This will converts all the results (particles and geometry) to VTK format and store them in folder `VTK/`. After finishing the simulation, you can render the results in Paraview. To convert the results to VTK format, just enter the following command in the terminal. This will converts all the results (particles and geometry) to VTK format and store them in folder `VTK/`.
`> pFlowToVTK` `> pFlowToVTK --binary`

View File

@ -8,9 +8,9 @@ fileFormat ASCII;
/*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/
globalBox // Simulation domain: every particles that goes outside this domain will be deleted globalBox // Simulation domain: every particles that goes outside this domain will be deleted
{ {
min (-0.12 -0.12 0.00); // lower corner point of the box min (-0.12 -0.12 0.00); // lower corner point of the box
max (0.12 0.12 0.11); // upper corner point of the box max (0.12 0.12 0.11); // upper corner point of the box
} }
decomposition decomposition
@ -20,45 +20,33 @@ decomposition
boundaries boundaries
{ {
neighborListUpdateInterval 50; /* Determines how often (how many iterations) do you want to
rebuild the list of particles in the neighbor list
of all boundaries in the simulation domain */
updateInterval 10; // Determines how often do you want to update the new changes in the boundary
neighborLength 0.004; // The distance from the boundary plane within which particles are marked to be in the boundary list
left left
{ {
type exit; // other options: periodict, reflective type exit; // other options: periodict, reflective
} }
right right
{ {
type exit; // other options: periodict, reflective type exit; // other options: periodict, reflective
} }
bottom bottom
{ {
type exit; // other options: periodict, reflective type exit; // other options: periodict, reflective
} }
top top
{ {
type exit; // other options: periodict, reflective type exit; // other options: periodict, reflective
} }
rear rear
{ {
type exit; // other options: periodict, reflective type exit; // other options: periodict, reflective
} }
front front
{ {
type exit; // other options: periodict, reflective type exit; // other options: periodict, reflective
} }
} }