Merge pull request #85 from omid-khosravi/main
Readme.md file for Rotary Air-Lock Valve was fixed
This commit is contained in:
commit
f98c9ab1f7
|
@ -0,0 +1,186 @@
|
|||
# Problem Definition
|
||||
The problem is to simulate a Rotary Air-Lock Valve with below diminsions:
|
||||
* Size of Cone:
|
||||
* Cone Gate: 29.17 cm
|
||||
* Cone Exit: 10.37 cm
|
||||
* Size of Outer Exit: 9.42 cm
|
||||
* External diameter of Circle: 20.74 cm
|
||||
There is one type of particle in this blender. Particles are poured into the inlet valve from t=**0** s.
|
||||
* **28000** particles with **5 mm** diameter poured into the valve with rate of **4000 particles/s**.
|
||||
|
||||
<html>
|
||||
<body>
|
||||
<div align="center"><b>
|
||||
a view of the Rotary Air-Lock Valve while rotating
|
||||
</div></b>
|
||||
<div align="center">
|
||||
<img src="sample sample sample sample", width=700px>
|
||||
</div>
|
||||
<div align="center"><i>
|
||||
particles are colored according to their id
|
||||
</div></i>
|
||||
</body>
|
||||
</html>
|
||||
|
||||
# Setting up the Case
|
||||
As it has been explained in the previous cases, the simulation case setup is based on text-based scripts. Here, the simulation case setup files are stored into three folders: `caseSetup`, `setting`, `stl` (see the above folders). See next the section for more information on how we can setup the geometry and its rotation.
|
||||
## Geometry
|
||||
|
||||
### Defining rotation axis
|
||||
In file `settings/geometryDict` the information of rotating axis and speed of rotation are defined. The rotation of this blender starts at time=**0 s** and ends at time=**7 s**.
|
||||
```C++
|
||||
// information for rotatingAxisMotion motion model
|
||||
rotatingAxisMotionInfo
|
||||
{
|
||||
rotAxis
|
||||
{
|
||||
|
||||
// first point for the axis of rotation
|
||||
p1 (0.561547 0.372714 0.000);
|
||||
|
||||
// second point for the axis of rotation
|
||||
p2 (0.561547 0.372714 0.010);
|
||||
|
||||
// rotation speed (rad/s)
|
||||
omega 2.1;
|
||||
|
||||
// Start time of Geometry Rotating (s)
|
||||
startTime 1.25;
|
||||
|
||||
// End time of Geometry Rotating (s)
|
||||
endTime 7;
|
||||
}
|
||||
}
|
||||
```
|
||||
### Surfaces
|
||||
In `settings/geometryDict` file, the surfaces component are defined to form a Rotating Air-Lock Valve.
|
||||
```C++
|
||||
surfaces
|
||||
{
|
||||
gear
|
||||
{
|
||||
// type of the wall
|
||||
type stlWall;
|
||||
|
||||
// file name in stl folder
|
||||
file gear.stl;
|
||||
|
||||
// material name of this wall
|
||||
material wallMat;
|
||||
|
||||
// motion component name
|
||||
motion rotAxis;
|
||||
}
|
||||
surfaces
|
||||
{
|
||||
// type of the wall
|
||||
type stlWall;
|
||||
|
||||
// file name in stl folder
|
||||
file surfaces.stl;
|
||||
|
||||
// material name of this wall
|
||||
material wallMat;
|
||||
|
||||
// motion component name
|
||||
motion none;
|
||||
}
|
||||
```
|
||||
## Defining particles
|
||||
### Diameter and material of spheres
|
||||
In the `caseSetup/sphereShape` the diameter and the material name of the particles are defined.
|
||||
|
||||
<div align="center">
|
||||
in <b>caseSetup/sphereShape</b> file
|
||||
</div>
|
||||
|
||||
```C++
|
||||
// names of shapes
|
||||
names (sphere);
|
||||
|
||||
// diameter of shapes
|
||||
diameters (0.005);
|
||||
|
||||
// material names for shapes
|
||||
materials (sphereMat);
|
||||
```
|
||||
### Particle positioning before start of simulation
|
||||
|
||||
<div align="center">
|
||||
in <b>settings/particlesDict</b> file
|
||||
</div>
|
||||
|
||||
```C++
|
||||
// positions particles
|
||||
positionParticles
|
||||
{
|
||||
|
||||
// creates the required fields with zero particles (empty).
|
||||
method empty;
|
||||
|
||||
// maximum number of particles in the simulation
|
||||
maxNumberOfParticles 50000;
|
||||
|
||||
// perform initial sorting based on morton code?
|
||||
mortonSorting Yes;
|
||||
}
|
||||
```
|
||||
|
||||
## Interaction between particles
|
||||
In `caseSetup/interaction` file, material names and properties and interaction parameters are defined. Since we are defining 1 material type in the simulation, the interaction matrix is 2x2 (interactions are symmetric).
|
||||
```C++
|
||||
// a list of materials names
|
||||
materials (sphereMat wallMat);
|
||||
|
||||
// density of materials [kg/m3]
|
||||
densities (1000 2500);
|
||||
|
||||
contactListType sortedContactList;
|
||||
|
||||
model
|
||||
{
|
||||
contactForceModel nonLinearNonLimited;
|
||||
|
||||
rollingFrictionModel normal;
|
||||
|
||||
/*
|
||||
Property (sphereMat-sphereMat sphereMat-wallMat
|
||||
wallMat-wallMat);
|
||||
*/
|
||||
|
||||
// Young modulus [Pa]
|
||||
Yeff (1.0e6 1.0e6
|
||||
1.0e6);
|
||||
|
||||
// Shear modulus [Pa]
|
||||
Geff (0.8e6 0.8e6
|
||||
0.8e6);
|
||||
|
||||
// Poisson's ratio [-]
|
||||
nu (0.25 0.25
|
||||
0.25);
|
||||
|
||||
// coefficient of normal restitution
|
||||
en (0.7 0.8
|
||||
1.0);
|
||||
|
||||
// coefficient of tangential restitution
|
||||
et (1.0 1.0
|
||||
1.0);
|
||||
|
||||
// dynamic friction
|
||||
mu (0.3 0.35
|
||||
0.35);
|
||||
|
||||
// rolling friction
|
||||
mur (0.1 0.1
|
||||
0.1);
|
||||
}
|
||||
```
|
||||
# Performing Simulation and previewing the results
|
||||
To perform simulations, enter the following commands one after another in the terminal.
|
||||
|
||||
Enter `$ particlesPhasicFlow` command to create the initial fields for particles.
|
||||
Enter `$ geometryPhasicFlow` command to create the geometry.
|
||||
At last, enter `$ sphereGranFlow` command to start the simulation.
|
||||
After finishing the simulation, you can use `$ pFlowtoVTK` to convert the results into vtk format stored in ./VTK folder.
|
|
@ -49,7 +49,7 @@ surfaces
|
|||
// motion component name
|
||||
motion rotAxis;
|
||||
}
|
||||
surfaces
|
||||
surfaces
|
||||
{
|
||||
// type of the wall
|
||||
type stlWall;
|
||||
|
|
Loading…
Reference in New Issue