24 Commits

Author SHA1 Message Date
d0aa5af792 tutorial files modified for minor errors 2023-09-25 17:39:22 +03:30
33a838b784 Merge pull request #89 from pedramyousefi/main
All the problems were fixed
2023-09-09 18:37:03 +03:30
1817c9e640 All the problems were fixed 2023-08-29 09:33:48 +03:30
012e386845 Merge pull request #88 from pedramyousefi/main
The fisrt Readme file added
2023-07-30 11:40:23 +03:30
413f054314 The fisrt Readme file added 2023-07-26 08:01:26 +03:30
610317715d Merge pull request #87 from pedramyousefi/main
ScrewConveyor added
2023-07-17 06:31:08 +03:30
e737e60011 The First Vesrion of ScrewConveyor added 2023-07-04 14:05:26 +03:30
e0796ce711 Update README.md 2023-06-24 14:40:34 +03:30
23f337f1b7 Update README.md for citation 2023-06-24 13:13:40 +03:30
311968b955 Update ReadMe.md 2023-06-07 16:43:18 +03:30
e0bf68511c Update ReadMe.md minor changes 2023-06-07 16:42:27 +03:30
1b313779a1 Update particleInsertion minor changes 2023-06-07 16:36:32 +03:30
61f48ea654 Merge branch 'main' of https://github.com/PhasicFlow/phasicFlow into main 2023-06-07 05:41:02 -07:00
5942263e46 documentation for Insertion 2023-06-07 05:40:43 -07:00
f98c9ab1f7 Merge pull request #85 from omid-khosravi/main
Readme.md file for Rotary Air-Lock Valve was fixed
2023-06-07 16:03:48 +03:30
3bc35e9e62 Update ReadMe.md for Rotary Air-Lock valve 2023-06-03 11:09:37 +03:30
30e43f94a2 Rotary Air-Lock Valve
Readme.md file was created.
2023-06-03 11:03:35 +03:30
12fe768668 Rotary Air-Lock Valve
Geometry was fixed.
2023-06-03 11:03:00 +03:30
bca9990bb0 Merge pull request #83 from omid-khosravi/main
Rotary Air-Lock Valve
2023-05-27 10:51:02 +03:30
892c3a09db Merge branch 'PhasicFlow:main' into main 2023-05-06 21:09:13 +02:00
709c5263b1 constexpr removed from kernel execution 2023-05-06 13:51:03 +03:30
7d62ba42de Rotary Air-Lock Valve
Comments for Settings Folder were fixed.
2023-05-01 16:18:49 +04:30
58254fe9f2 Rotary Air-Lock Valve
Comments for interaction were fixed.
2023-04-30 18:49:49 +04:30
485c5e3142 RotaryAirLockValve
Added Rotary Air-Lock Valve
Comments for caseSetup were fixed
2023-04-30 18:42:35 +04:30
42 changed files with 26911 additions and 112 deletions

View File

@ -3,7 +3,7 @@
</div>
**PhasicFlow** is a parallel C++ code for performing DEM simulations. It can run on shared-memory multi-core computational units such as multi-core CPUs or GPUs (for now it works on CUDA-enabled GPUs). The parallelization method mainly relies on loop-level parallelization on a shared-memory computational unit. You can build and run PhasicFlow in serial mode on regular PCs, in parallel mode for multi-core CPUs, or build it for a GPU device to off-load computations to a GPU. In its current statues you can simulate millions of particles (up to 32M particles tested) on a single desktop computer. You can see the [performance tests of PhasicFlow](https://github.com/PhasicFlow/phasicFlow/wiki/Performance-of-phasicFlow) in the wiki page.
**PhasicFlow** is a parallel C++ code for performing DEM simulations. It can run on shared-memory multi-core computational units such as multi-core CPUs or GPUs (for now it works on CUDA-enabled GPUs). The parallelization method mainly relies on loop-level parallelization on a shared-memory computational unit. You can build and run PhasicFlow in serial mode on regular PCs, in parallel mode for multi-core CPUs, or build it for a GPU device to off-load computations to a GPU. In its current statues you can simulate millions of particles (up to 80M particles tested) on a single desktop computer. You can see the [performance tests of PhasicFlow](https://github.com/PhasicFlow/phasicFlow/wiki/Performance-of-phasicFlow) in the wiki page.
## How to build?
You can build PhasicFlow for CPU and GPU executions. [Here is a complete step-by-step procedure](https://github.com/PhasicFlow/phasicFlow/wiki/How-to-Build-PhasicFlow).
@ -22,3 +22,19 @@ PhasicFlowPlus is and extension to PhasicFlow for simulating particle-fluid syst
* [Kokkos](https://github.com/kokkos/kokkos) from National Technology & Engineering Solutions of Sandia, LLC (NTESS)
* [CLI11 1.8](https://github.com/CLIUtils/CLI11) from University of Cincinnati.
## How to cite PhasicFlow
If you are using PhasicFlow in your research or industrial work, cite the following [article](https://www.sciencedirect.com/science/article/pii/S0010465523001662):
```
@article{NOROUZI2023108821,
title = {PhasicFlow: A parallel, multi-architecture open-source code for DEM simulations},
journal = {Computer Physics Communications},
volume = {291},
pages = {108821},
year = {2023},
issn = {0010-4655},
doi = {https://doi.org/10.1016/j.cpc.2023.108821},
url = {https://www.sciencedirect.com/science/article/pii/S0010465523001662},
author = {H.R. Norouzi},
keywords = {Discrete element method, Parallel computing, CUDA, GPU, OpenMP, Granular flow}
}
```

View File

@ -31,6 +31,28 @@ Licence:
namespace pFlow
{
/**
* This class manages all the insertion regions for particles insertion
* in the simulation.
*
* Any number of insertion regions can be defined in a simulation. The
* data for particle insertion is provided in particleInsertion file, which
* looks like this. A list of insertion regions (class insertionRegion) can be defined in this file.
* For more information see file insertionRegion.hpp.
* \verbatim
active yes;
region1
{
// the data for insertionRegion
}
region2
{
// Data for insertionRegion
}
\endverbatim
*/
template<typename ShapeType>
class Insertion
:

View File

@ -28,13 +28,18 @@ Licence:
namespace pFlow
{
/**
* This manages insertion of particles from a region based on the ShapeType
*
*/
template<typename ShapeType>
class InsertionRegion
:
public insertionRegion
{
protected:
// - type of particle shapes
/// Ref to Shapes
const ShapeType& shapes_;
static bool checkForContact(
@ -45,39 +50,52 @@ protected:
public:
// - type info
/// Type info
TypeInfoTemplateNV("insertionRegion", ShapeType);
InsertionRegion(const dictionary& dict, const ShapeType& shapes);
// - Constructors
InsertionRegion(const InsertionRegion<ShapeType>& ) = default;
/// Construct from dictionary
InsertionRegion(const dictionary& dict, const ShapeType& shapes);
InsertionRegion(InsertionRegion<ShapeType>&&) = default;
/// Copy
InsertionRegion(const InsertionRegion<ShapeType>& ) = default;
InsertionRegion<ShapeType>& operator=(const InsertionRegion<ShapeType>& ) = default;
/// Move
InsertionRegion(InsertionRegion<ShapeType>&&) = default;
InsertionRegion<ShapeType>& operator=(InsertionRegion<ShapeType>&&) = default;
/// Copy assignment
InsertionRegion<ShapeType>& operator=(const InsertionRegion<ShapeType>& ) = default;
/// Copy assignment
InsertionRegion<ShapeType>& operator=(InsertionRegion<ShapeType>&&) = default;
auto clone()const
{
return makeUnique<InsertionRegion<ShapeType>>(*this);
}
/// Clone
auto clone()const
{
return makeUnique<InsertionRegion<ShapeType>>(*this);
}
auto clonePtr()const
{
return new InsertionRegion<ShapeType>(*this);
}
/// Clone ptr
auto clonePtr()const
{
return new InsertionRegion<ShapeType>(*this);
}
bool insertParticles
(
real currentTime,
real dt,
wordVector& names,
realx3Vector& pos,
bool& insertionOccured
);
// - Methods
/// Insert particles at currentTime
/// Check if currentTime is the right moment for
/// particle insertion. Fill the vectors name, pos and signal
/// if particle insertion occured or not.
bool insertParticles
(
real currentTime,
real dt,
wordVector& names,
realx3Vector& pos,
bool& insertionOccured
);
//bool read(const dictionary& dict);

View File

@ -21,49 +21,58 @@ Licence:
#ifndef __insertion_hpp__
#define __insertion_hpp__
#include "streams.hpp"
#include "types.hpp"
#include "virtualConstructor.hpp"
namespace pFlow
{
// forward
class particles;
class dictionary;
/**
* Base class for particle insertion
*/
class insertion
{
protected:
// - insertion active
/// Is insertion active
Logical active_ = "No";
// - check for collision / desabled for now
/// Check for collision? It is not active now
Logical checkForCollision_ = "No";
// - particles
/// Ref to particles
particles& particles_;
/// Read from dictionary
bool readInsertionDict(const dictionary& dict);
/// Write to dictionary
bool writeInsertionDict(dictionary& dict)const;
public:
// type info
/// Type info
TypeInfo("insertion");
/// Construct from component
insertion(particles& prtcl);
/// Destructor
virtual ~insertion() = default;
/// is Insertion active
bool isActive()const {
return active_();
}
/// read from iIstream
virtual bool read(iIstream& is) = 0;
/// write to iOstream
virtual bool write(iOstream& os)const = 0;

View File

@ -31,67 +31,126 @@ namespace pFlow
class dictionary;
/**
* This class defines all the necessary enteties for defining an insertion
* region.
*
* Insertion region information are supplied through a dictionary in a file.
* For example:
\verbatim
{
type cylinderRegion; // type of insertion region
rate 15000; // insertion rate (particles/s)
startTime 0; // (s)
endTime 0.5; // (s)
interval 0.025; // (s)
cylinderRegionInfo
{
radius 0.09; // radius of cylinder (m)
p1 (0.0 0.0 0.10); // (m,m,m)
p2 (0.0 0.0 0.11); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 0.0 -0.6); // initial velocity of inserted particles
}
mixture
{
lightSphere 1; // mixture composition of inserted particles
}
} \endverbatim
*
* More information on the above dictionary entries can be found in
* the table below.
*
*
* | Parameter | Type | Description | Optional [default value] |
* |----| :---: | ---- | ---- |
* | type | word | type of the insertion region with name ### | No |
* | rate | real | rate of insertion (particle/s) | No |
* | startTime | real | start of insertion (s) | No |
* | endTime | real | end of insertion (s) | No |
* | interval | real | time interval between successive insertions (s) | No |
* | ###Info | dictionary | data for insertion region | No |
* | setFields | dictionary | set field for inserted particles (s) | Yes [empty dictionray] |
* | mixture | dictionary | mixture of particles to be inserted (s) | No |
*
*/
class insertionRegion
:
public timeFlowControl
{
protected:
// - name of the region
/// name of the region
word name_;
// - type of insertion region
/// type of insertion region
word type_;
// peakable region of points
/// peakable region of points
uniquePtr<peakableRegion> pRegion_ = nullptr;
// mixture of shapes
/// mixture of shapes
uniquePtr<shapeMixture> mixture_ = nullptr;
// setFields for insertion region
/// setFields for insertion region
uniquePtr<setFieldList> setFields_ = nullptr;
/// read from dictionary
bool readInsertionRegion(const dictionary& dict);
/// write to dictionary
bool writeInsertionRegion(dictionary& dict) const;
public:
/// Type info
TypeInfoNV("insertionRegion");
//// - Constructors
// - Constructors
/// Construct from a dictionary
insertionRegion(const dictionary& dict);
/// Copy
insertionRegion(const insertionRegion& src);
/// Move
insertionRegion(insertionRegion&&) = default;
/// Copy assignment
insertionRegion& operator=(const insertionRegion&);
/// Move assignment
insertionRegion& operator=(insertionRegion&&) = default;
/// Destructor
~insertionRegion() = default;
//// - Methods
// - Methods
/// Const ref to setFields
const auto& setFields()const
{
return setFields_();
}
/// Const ref to name of the region
const auto& name()const
{
return name_;
}
// - IO operation
//// - IO operation
/// read from dictionary
bool read(const dictionary& dict)
{
if(!timeFlowControl::read(dict))return false;
@ -99,14 +158,13 @@ public:
return readInsertionRegion(dict);
}
/// write to dictionary
bool write(dictionary& dict)const
{
if(!timeFlowControl::write(dict)) return false;
return writeInsertionRegion(dict);
}
};
} //pFlow

View File

@ -21,6 +21,17 @@ Licence:
#include "timeFlowControl.hpp"
#include "dictionary.hpp"
size_t pFlow::timeFlowControl::numberToBeInserted(real currentTime)
{
if(currentTime<startTime_)return 0;
if(currentTime>endTime_) return 0;
return static_cast<size_t>
(
(currentTime - startTime_ + interval_)*rate_ - numInserted_
);
}
bool pFlow::timeFlowControl::readTimeFlowControl
(
const dictionary& dict
@ -59,4 +70,14 @@ pFlow::timeFlowControl::timeFlowControl
fatalExit;
}
}
bool pFlow::timeFlowControl::insertionTime( real currentTime, real dt)
{
if(currentTime < startTime_) return false;
if(currentTime > endTime_) return false;
if( mod(abs(currentTime-startTime_),interval_)/dt < 1 ) return true;
return false;
}

View File

@ -29,32 +29,40 @@ namespace pFlow
class dictionary;
/**
* Time control for particle insertion
*/
class timeFlowControl
{
protected:
/// start time of insertion
real startTime_;
/// end time of insertion
real endTime_;
/// time interval between each insertion
real interval_;
/// rate of insertion
real rate_;
size_t numInserted_ = 0;
/// number of inserted particles
size_t numInserted_ = 0;
/// Read dictionary
bool readTimeFlowControl(const dictionary& dict);
/// Write to dictionary
bool writeTimeFlowControl(dictionary& dict) const;
size_t numberToBeInserted(real currentTime)
{
if(currentTime<startTime_)return 0;
if(currentTime>endTime_) return 0;
return static_cast<size_t>( (currentTime - startTime_ + interval_)*rate_ - numInserted_ );
}
/// Return number of particles to be inserted at time currentTime
size_t numberToBeInserted(real currentTime);
/// Add to numInserted
inline
size_t addToNumInserted(size_t newInserted)
{
return numInserted_ += newInserted;
@ -62,30 +70,25 @@ protected:
public:
/// Construct from dictionary
timeFlowControl(const dictionary& dict);
bool insertionTime( real currentTime, real dt)
{
if(currentTime < startTime_) return false;
if(currentTime > endTime_) return false;
if( mod(abs(currentTime-startTime_),interval_)/dt < 1 ) return true;
return false;
}
/// Is currentTime the insertion moment?
bool insertionTime( real currentTime, real dt);
/// Total number inserted so far
size_t totalInserted()const
{
return numInserted_;
}
/// Read from dictionary
bool read(const dictionary& dict)
{
return readTimeFlowControl(dict);
}
/// Write to dictionary
bool write(dictionary& dict)const
{
return writeTimeFlowControl(dict);

View File

@ -29,70 +29,95 @@ namespace pFlow
class dictionary;
/**
* Defines a mixture of particles for particle insertion.
*
* The mixture composition is defined based on the integer numbers.
* For example, if there are 3 shape names in the simulaiotn
* (shape1, shape2, and shape3), the mixture composition can be defined as:
* \verbatim
{
shape1 4;
shape2 2;
shape3 6;
}
\endverbatim
*
*/
class shapeMixture
{
protected:
// - list of shape names
/// List of shape names
wordVector names_;
// - number composition
/// Number composition
uint32Vector number_;
// - number inserted of each shape
/// Number of inserted particles of each shape
uint32Vector numberInserted_;
/// Current number of inserted
uint32Vector current_;
public:
//- type Info
/// Type info
TypeInfoNV("shapeMixture");
//// - constrcutores
// - Constrcutors
//
/// Construct from dictionary
shapeMixture(const dictionary & dict);
/// Copy
shapeMixture(const shapeMixture&) = default;
/// Move
shapeMixture(shapeMixture&&) = default;
/// Copy assignment
shapeMixture& operator=(const shapeMixture&) = default;
/// Move assignment
shapeMixture& operator=(shapeMixture&&) = default;
/// Polymorphic copy
uniquePtr<shapeMixture> clone()const
{
return makeUnique<shapeMixture>(*this);
}
/// Polymorphic copy
shapeMixture* clonePtr()const
{
return new shapeMixture(*this);
}
//
/// Destructor
~shapeMixture() = default;
//// - Methods
// - Methods
/// The name of the next shape that should be inserted
word getNextShapeName();
/// The name of the n next shapes that should be inserted
void getNextShapeNameN(size_t n, wordVector& names);
/// Size of mixture (names)
auto size()const {
return names_.size();
}
/// Total number inserted particles
auto totalInserted()const {
return sum(numberInserted_);
}
//// - IO operatoins
// - IO operatoins
bool read(const dictionary& dict);
bool write(dictionary& dict) const;

View File

@ -380,10 +380,13 @@ bool pFlow::sphereParticles::insertParticles
return false;
}
auto exclusionListAllPtr = getFieldObjectList();
auto exclusionListAllPtr = getFieldObjectList();
auto newInsertedPtr = pStruct().insertPoints( position, setField, time(), exclusionListAllPtr());
if(!newInsertedPtr)
{
fatalErrorInFunction<<

View File

@ -17,14 +17,13 @@ Licence:
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-----------------------------------------------------------------------------*/
/*!
@class pFlow::sphereParticles
@brief Class for managing spherical particles
This is a top-level class that contains the essential components for
defining spherical prticles in a DEM simulation.
/**
* @class pFlow::sphereParticles
*
* @brief Class for managing spherical particles
*
* This is a top-level class that contains the essential components for
* defining spherical prticles in a DEM simulation.
*/
#ifndef __sphereParticles_hpp__

View File

@ -544,18 +544,21 @@ public:
resize(maxInd+1);
}
if constexpr (isHostAccessible_)
{
fillSelected(deviceVectorAll(), indices.hostView(), indices.size(), val);
return true;
}else
{
fillSelected(deviceVectorAll(), indices.deviceView(), indices.size(), val);
return true;
}
using policy = Kokkos::RangePolicy<
execution_space,
Kokkos::IndexType<int32> >;
auto dVec = deviceVectorAll();
auto dIndex = indices.deviceView();
Kokkos::parallel_for(
"insertSetElement",
policy(0,indices.size()), LAMBDA_HD(int32 i){
dVec(dIndex(i))= val;
});
Kokkos::fence();
return false;
return true;
}
INLINE_FUNCTION_H
@ -597,13 +600,11 @@ public:
bool insertSetElement(const int32IndexContainer& indices, const Vector<T>& vals)
{
//Info<<"start of insertSetElement vecotsingle"<<endInfo;
if(indices.size() == 0)return true;
if(indices.size() != vals.size())return false;
auto maxInd = indices.max();
/*output<<"maxInd "<< maxInd<<endl;
output<<"size() "<< size()<<endl;*/
if(this->empty() || maxInd > size()-1 )
{
resize(maxInd+1);

View File

@ -158,6 +158,7 @@ void* pFlow::setFieldEntry::setPointFieldSelected
if( pointField<VectorDual,Type>::TYPENAME() == fieldTypeName )
{
auto& field = owner.lookupObject<pointField<VectorDual,Type>>(fName);
if(field.insertSetElement(selected, value))
return &field;

View File

@ -373,17 +373,19 @@ pFlow::uniquePtr<pFlow::int32IndexContainer> pFlow::pointStructure::insertPoints
tobeInsertedIndex_ = newPointsPtr();
// set the position of new points
if(!pointPosition_.insertSetElement(
newPointsPtr(),
pos)
)return nullptr;
if(!pointFlag_.insertSetElement(
newPointsPtr(),
static_cast<int8>(PointFlag::ACTIVE))
)return nullptr;
setNumMaxPoints();
auto minInd = newPointsPtr().min();
auto maxInd = newPointsPtr().max();
@ -393,6 +395,7 @@ pFlow::uniquePtr<pFlow::int32IndexContainer> pFlow::pointStructure::insertPoints
for(auto sfEntry:setField)
{
if(void* fieldPtr =
sfEntry.setPointFieldSelectedAll(
owner,

View File

@ -41,7 +41,7 @@ setFields
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rotVelocity realx3 (0 0 0); // rotational velocity (rad/s)
r Velocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word smallSphere; // name of the particle shape
}
@ -53,8 +53,7 @@ setFields
selectRandomInfo
{
begin 0; // begin index of points
end 30000; // end index of points
number 29999; // stride for selector
end 29999; // end index of points
}
fieldValue // fields that the selector is applied to
{

View File

@ -0,0 +1,209 @@
# Problem Definition
The problem is to simulate a Rotary Air-Lock Valve. The external diameter of rotor is about 21 cm. There is one type of particle in this simulation. Particles are inserted into the inlet of the valve from t=**0** s.
* **28000** particles with **5 mm** diameter are inserted into the valve with the rate of **4000 particles/s**.
* The rotor starts its ortation at t = 1.25 s at the rate of 2.1 rad/s.
<html>
<body>
<div align="center"><b>
a view of the Rotary Air-Lock Valve while rotating
</div></b>
<div align="center">
<img src="https://github.com/PhasicFlow/phasicFlow/blob/media/media/rotaryAirLock.gif", width=700px>
</div>
<div align="center"><i>
particles are colored according to time of insertion
</div></i>
</body>
</html>
# Setting up the Case
As it has been explained in the previous simulations, the simulation case setup is based on text-based scripts. Here, the simulation case setup files are stored into three folders: `caseSetup`, `setting`, and `stl` (see the above folders). See next the section for more information on how we can setup the geometry and its rotation.
## Geometry
### Defining rotation axis
In file `settings/geometryDict` the information of rotating axis of rotor and its speed of rotation are defined. The rotation starts at t = **1.25 s** and ends at t = **7 s**.
```C++
// information for rotatingAxisMotion motion model
rotatingAxisMotionInfo
{
rotAxis
{
// first point for the axis of rotation
p1 (0.561547 0.372714 0.000);
// second point for the axis of rotation
p2 (0.561547 0.372714 0.010);
// rotation speed (rad/s)
omega 2.1;
// Start time of Geometry Rotating (s)
startTime 1.25;
// End time of Geometry Rotating (s)
endTime 7;
}
}
```
### Surfaces
In `settings/geometryDict` file, the surfaces component are defined to form a Rotating Air-Lock Valve. All surface components are supplied in stl file format. All stl files should be stored under 'stl' folder.
```C++
surfaces
{
gear
{
// type of the wall
type stlWall;
// file name in stl folder
file gear.stl;
// material name of this wall
material wallMat;
// motion component name
motion rotAxis;
}
surfaces
{
// type of the wall
type stlWall;
// file name in stl folder
file surfaces.stl;
// material name of this wall
material wallMat;
// motion component name
motion none;
}
```
## Defining particles
### Diameter and material of spheres
In the `caseSetup/sphereShape` the diameter and the material name of the particles are defined.
<div align="center">
in <b>caseSetup/sphereShape</b> file
</div>
```C++
// names of shapes
names (sphere);
// diameter of shapes
diameters (0.005);
// material names for shapes
materials (sphereMat);
```
### Insertion of Particles
Insertion of particles starts from t = 0 s and ends at t = 7 s. A box is defined for the port from which particles are being inderted. The rate of insertion is 4000 particles per second.
<div align="center">
in <b>settings/particleInsertion</b> file
</div>
```C++
topRegion
{
// type of insertion region
type boxRegion;
// insertion rate (particles/s)
rate 4000;
// Start time of Particles insertion (s)
startTime 0;
// End time of Particles insertion (s)
endTime 7;
// Time interval between each insertion (s)
interval 0.025;
// Coordinates of BoxRegion (m,m,m)
boxRegionInfo
{
min ( 0.48 0.58 0.01 ); // (m,m,m)
max ( 0.64 0.59 0.05 ); // (m,m,m)
}
setFields
{
// initial velocity of inserted particles
velocity realx3 (0.0 -0.6 0.0);
}
mixture
{
sphere 1;
}
}
```
## Interaction between particles
In `caseSetup/interaction` file, material names and properties and interaction parameters are defined. Since we are defining 1 material type in the simulation, the interaction matrix is 2x2 (interactions are symmetric).
```C++
// a list of materials names
materials (sphereMat wallMat);
// density of materials [kg/m3]
densities (1000 2500);
contactListType sortedContactList;
model
{
contactForceModel nonLinearNonLimited;
rollingFrictionModel normal;
/*
Property (sphereMat-sphereMat sphereMat-wallMat
wallMat-wallMat);
*/
// Young modulus [Pa]
Yeff (1.0e6 1.0e6
1.0e6);
// Shear modulus [Pa]
Geff (0.8e6 0.8e6
0.8e6);
// Poisson's ratio [-]
nu (0.25 0.25
0.25);
// coefficient of normal restitution
en (0.7 0.8
1.0);
// coefficient of tangential restitution
et (1.0 1.0
1.0);
// dynamic friction
mu (0.3 0.35
0.35);
// rolling friction
mur (0.1 0.1
0.1);
}
```
# Performing simulation and seeing the results
To perform simulations, enter the following commands one after another in the terminal.
Enter `$ particlesPhasicFlow` command to create the initial fields for particles (here the simulaiton has no particle at the beginning).
Enter `$ geometryPhasicFlow` command to create the geometry.
At last, enter `$ sphereGranFlow` command to start the simulation.
After finishing the simulation, you can use `$ pFlowtoVTK` to convert the results into vtk format stored in ./VTK folder.

View File

@ -0,0 +1,83 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName interaction;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// a list of materials names
materials (sphereMat wallMat);
// density of materials [kg/m3]
densities (1000 2500);
contactListType sortedContactList;
model
{
contactForceModel nonLinearNonLimited;
rollingFrictionModel normal;
/*
Property (sphereMat-sphereMat sphereMat-wallMat
wallMat-wallMat);
*/
// Young modulus [Pa]
Yeff (1.0e6 1.0e6
1.0e6);
// Shear modulus [Pa]
Geff (0.8e6 0.8e6
0.8e6);
// Poisson's ratio [-]
nu (0.25 0.25
0.25);
// coefficient of normal restitution
en (0.7 0.8
1.0);
// coefficient of tangential restitution
et (1.0 1.0
1.0);
// dynamic friction
mu (0.3 0.35
0.35);
// rolling friction
mur (0.1 0.1
0.1);
}
contactSearch
{
// method for broad search particle-particle
method NBS;
// method for broad search particle-wall
wallMapping cellMapping;
NBSInfo
{
// each 10 timesteps, update neighbor list
updateFrequency 10;
// bounding box size to particle diameter (max)
sizeRatio 1.1;
}
cellMappingInfo
{
// each 20 timesteps, update neighbor list
updateFrequency 10;
// bounding box for particle-wall search (> 0.5)
cellExtent 0.6;
}
}

View File

@ -0,0 +1,54 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// is insertion active?
active yes;
// not implemented for yes
collisionCheck No;
/*
one region is considered for inserting particles.
*/
topRegion
{
// type of insertion region
type boxRegion;
// insertion rate (particles/s)
rate 4000;
// Start time of Particles insertion (s)
startTime 0;
// End time of Particles insertion (s)
endTime 7;
// Time Interval between each insertion (s)
interval 0.025;
// Coordinates of BoxRegion (m,m,m)
boxRegionInfo
{
min ( 0.48 0.58 0.01 ); // (m,m,m)
max ( 0.64 0.59 0.05 ); // (m,m,m)
}
setFields
{
// initial velocity of inserted particles
velocity realx3 (0.0 -0.6 0.0);
}
mixture
{
sphere 1;
}
}

View File

@ -0,0 +1,19 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
objectName sphereDict;
objectType sphereShape;
// names of shapes
names (sphere);
// diameter of shapes
diameters (0.005);
// material names for shapes
materials (sphereMat);

View File

@ -0,0 +1,66 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName geometryDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// motion model: rotating object around an axis
motionModel rotatingAxisMotion;
// information for rotatingAxisMotion motion model
rotatingAxisMotionInfo
{
rotAxis
{
// first point for the axis of rotation
p1 (0.561547 0.372714 0.000);
// second point for the axis of rotation
p2 (0.561547 0.372714 0.010);
// rotation speed (rad/s)
omega 2.1;
// Start time of Geometry Rotating (s)
startTime 1.25;
// End time of Geometry Rotating (s)
endTime 7;
}
}
surfaces
{
gear
{
// type of the wall
type stlWall;
// file name in stl folder
file gear.stl;
// material name of this wall
material wallMat;
// motion component name
motion rotAxis;
}
surfaces
{
// type of the wall
type stlWall;
// file name in stl folder
file surfaces.stl;
// material name of this wall
material wallMat;
// motion component name
motion none;
}

View File

@ -0,0 +1,43 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName geometryDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
setFields
{
defaultValue
{
// linear velocity (m/s)
velocity realx3 (0 0 0);
// linear acceleration (m/s2)
acceleration realx3 (0 0 0);
// rotational velocity (rad/s)
rVelocity realx3 (0 0 0);
// name of the particle shape
shapeName word sphere;
}
selectors
{}
}
// positions particles
positionParticles
{
// creates the required fields with zero particles (empty).
method empty;
// maximum number of particles in the simulation
maxNumberOfParticles 50000;
// perform initial sorting based on morton code?
mortonSorting Yes;
}

View File

@ -0,0 +1,48 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName geometryDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
run rotatingValve;
// time step for integration (s)
dt 0.00001;
// start time for simulation
startTime 0;
// end time for simulation
endTime 7;
// time interval for saving the simulation
saveInterval 0.05;
// maximum number of digits for time folder
timePrecision 6;
// gravity vector (m/s2)
g (0 -9.8 0);
/*
Simulation domain every particles that goes outside this domain is deleted.
*/
domain
{
min (0.397538 0.178212 0.00);
max (0.725537 0.600214 0.06);
}
// integration method
integrationMethod AdamsBashforth3;
// report timers?
timersReport Yes;
// time interval for reporting timers
timersReportInterval 0.01;

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

View File

View File

@ -16,7 +16,7 @@ setFields
// linear acceleration (m/s2)
acceleration realx3 (0 0 0);
// rotational velocity (rad/s)
rotVelocity realx3 (0 0 0);
rVelocity realx3 (0 0 0);
// name of the particle shape
shapeName word smallSphere;
}

View File

@ -24,7 +24,7 @@ setFields
acceleration realx3 (0 0 0);
// rotational velocity (rad/s)
rotVelocity realx3 (0 0 0);
rVelocity realx3 (0 0 0);
// name of the particle shape
shapeName word smallSphere;

View File

@ -41,7 +41,7 @@ setFields
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rotVelocity realx3 (0 0 0); // rotational velocity (rad/s)
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word smallSphere; // name of the particle shape
}

View File

@ -13,7 +13,7 @@ setFields
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rotVelocity realx3 (0 0 0); // rotational velocity (rad/s)
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word lightSphere; // name of the particle shape
}

View File

@ -19,7 +19,7 @@ setFields
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rotVelocity realx3 (0 0 0); // rotational velocity (rad/s)
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word glassBead; // name of the particle shape
}

View File

@ -19,7 +19,7 @@ setFields
{
velocity realx3 (0 0 0); // linear velocity (m/s)
acceleration realx3 (0 0 0); // linear acceleration (m/s2)
rotVelocity realx3 (0 0 0); // rotational velocity (rad/s)
rVelocity realx3 (0 0 0); // rotational velocity (rad/s)
shapeName word sphere1; // name of the particle shape
}

View File

@ -0,0 +1,208 @@
# Simulating a screw conveyor {#screwConveyor}
## Problem definition
The problem is to simulate a screw conveyorwith the diameter 0.2 m and the length 1 m and 20 cm pitch. It is filled with 30,000 4-mm spherical particles. The timestep for integration is 0.00001 s.
<div align="center"><b>
a view of rotating drum
![]()
</b></div>
***
## Setting up the case
PhasicFlow simulation case setup is based on the text-based scripts that we provide in two folders located in the simulation case folder: `settings` and `caseSetup` (You can find the case setup files in the above folders.
All the commands should be entered in the terminal while the current working directory is the simulation case folder (at the top of the `caseSetup` and `settings`).
### Creating particles
Open the file `settings/particlesDict`. Two dictionaries, `positionParticles` and `setFields` position particles and set the field values for the particles.
In dictionary `positionParticles`, the positioning `method` is `positionOrdered`, which position particles in order in the space defined by `box`. `box` space is defined by two corner points `min` and `max`. In dictionary `positionOrderedInfo`, `numPoints` defines number of particles; `diameter`, the distance between two adjacent particles, and `axisOrder` defines the axis order for filling the space by particles.
<div align="center">
in <b>settings/particlesDict</b> file
</div>
```C++
positionParticles
{
method empty; // creates the required fields with zero particles (empty).
maxNumberOfParticles 50000; // maximum number of particles in the simulation
mortonSorting Yes; // perform initial sorting based on morton code?
}
```
Enter the following command in the terminal to create the particles and store them in `0` folder.
`> particlesPhasicFlow`
### Creating geometry
In file `settings/geometryDict` , you can provide information for creating geometry. Each simulation should have a `motionModel` that defines a model for moving the surfaces in the simulation. `rotatingAxisMotion` model defines a fixed axis which rotates around itself. The dictionary `rotAxis` defines an motion component with `p1` and `p2` as the end points of the axis and `omega` as the rotation speed in rad/s. You can define more than one motion component in a simulation.
<div align="center">
in <b>settings/geometryDict</b> file
</div>
```C++
motionModel rotatingAxisMotion;
.
.
.
rotatingAxisMotionInfo
{
rotAxis
{
p1 (1.09635 0.2010556 0.22313511); // first point for the axis of rotation
p2 (0.0957492 0.201556 0.22313511); // second point for the axis of rotation
omega 3; // rotation speed (rad/s)
startTime 5;
endTime 30;
}
}
```
In the dictionary `surfaces` you can define all the surfaces (shell) in the simulation. Two main options are available: built-in geometries in PhasicFlow, and providing surfaces with stl file. Here we use built-in geometries. In `cylinder` dictionary, a cylindrical shell with end helix, `material` name `prop1`, `motion` component `none` is defined. `helix` define plane helix at center of cylindrical shell, `material` name `prop1` and `motion` component `rotAxis`.'rotAxis' is use for helix because it is rotating and 'none' is use for shell because It is motionless.
<div align="center">
in <b>settings/geometryDict</b> file
</div>
```C++
surfaces
{
helix
{
type stlWall; // type of the wall
file helix.stl; // file name in stl folder
material prop1; // material name of this wall
motion rotAxis; // motion component name
}
shell
{
type stlWall; // type of the wall
file shell.stl; // file name in stl folder
material prop1; // material name of this wall
motion none; // motion component name
}
}
```
Enter the following command in the terminal to create the geometry and store it in `0/geometry` folder.
`> geometryPhasicFlow`
### Defining properties and interactions
In the file `caseSetup/interaction` , you find properties of materials. `materials` defines a list of material names in the simulation and `densities` sets the corresponding density of each material name. model dictionary defines the interaction model for particle-particle and particle-wall interactions. `contactForceModel` selects the model for mechanical contacts (here nonlinear model with limited tangential displacement) and `rollingFrictionModel` selects the model for calculating rolling friction. Other required prosperities should be defined in this dictionary.
<div align="center">
in <b>caseSetup/interaction</b> file
</div>
```C++
materials (prop1); // a list of materials names
densities (1000.0); // density of materials [kg/m3]
contactListType sortedContactList;
model
{
contactForceModel nonLinearNonLimited;
rollingFrictionModel normal;
Yeff (1.0e6); // Young modulus [Pa]
Geff (0.8e6); // Shear modulus [Pa]
nu (0.25); // Poisson's ratio [-]
en (0.7); // coefficient of normal restitution
et (1.0); // coefficient of tangential restitution
mu (0.3); // dynamic friction
mur (0.1); // rolling friction
}
```
Dictionary `contactSearch` sets the methods for particle-particle and particle-wall contact search. `method` specifies the algorithm for finding neighbor list for particle-particle contacts and `wallMapping` shows how particles are mapped onto walls for finding neighbor list for particle-wall contacts. `updateFrequency` sets the frequency for updating neighbor list and `sizeRatio` sets the size of enlarged cells (with respect to particle diameter) for finding neighbor list. Larger `sizeRatio` include more particles in the neighbor list and you require to update it less frequent.
<div align="center">
in <b>caseSetup/interaction</b> file
</div>
```C++
contactSearch
{
method NBS; // method for broad search particle-particle
wallMapping cellMapping; // method for broad search particle-wall
NBSInfo
{
updateFrequency 10; // each 20 timesteps, update neighbor list
sizeRatio 1.1; // bounding box size to particle diameter (max)
}
cellMappingInfo
{
updateFrequency 10; // each 20 timesteps, update neighbor list
cellExtent 0.6; // bounding box for particle-wall search (> 0.5)
}
}
```
In the file `caseSetup/sphereShape`, you can define a list of `names` for shapes (`shapeName` in particle field), a list of diameters for shapes and their `properties` names.
<div align="center">
in <b>caseSetup/sphereShape</b> file
</div>
```C++
names (sphere1); // names of shapes
diameters (0.01); // diameter of shapes
materials (prop1); // material names for shapes
```
Other settings for the simulation can be set in file `settings/settingsDict`. The dictionary `domain` defines the a rectangular bounding box with two corner points for the simulation. Each particle that gets out of this box, will be deleted automatically.
<div align="center">
in <b>settings/settingsDict</b> file
</div>
```C++
dt 0.0001; // time step for integration (s)
startTime 0; // start time for simulation
endTime 20; // end time for simulation
saveInterval 0.05; // time interval for saving the simulation
timePrecision 6; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
domain
{
min (0.0 -0.06 0.001);
max (1.2 1 0.5);
}
integrationMethod AdamsBashforth3; // integration method
timersReport Yes; // report timers?
timersReportInterval 0.01; // time interval for reporting timers
```
## Running the case
The solver for this simulation is `sphereGranFlow`. Enter the following command in the terminal. Depending on the computational power, it may take a few minutes to a few hours to complete.
`> sphereGranFlow`
## Post processing
After finishing the simulation, you can render the results in Paraview. To convert the results to VTK format, just enter the following command in the terminal. This will converts all the results (particles and geometry) to VTK format and store them in folder `VTK/`.
`> pFlowToVTK`

View File

@ -0,0 +1,54 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName interaction;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
materials (prop1); // a list of materials names
densities (1000.0); // density of materials [kg/m3]
contactListType sortedContactList;
model
{
contactForceModel nonLinearNonLimited;
rollingFrictionModel normal;
Yeff (1.0e6); // Young modulus [Pa]
Geff (0.8e6); // Shear modulus [Pa]
nu (0.25); // Poisson's ratio [-]
en (0.7); // coefficient of normal restitution
et (1.0); // coefficient of tangential restitution
mu (0.3); // dynamic friction
mur (0.1); // rolling friction
}
contactSearch
{
method NBS; // method for broad search particle-particle
wallMapping cellMapping; // method for broad search particle-wall
NBSInfo
{
updateFrequency 10; // each 20 timesteps, update neighbor list
sizeRatio 1.1; // bounding box size to particle diameter (max)
}
cellMappingInfo
{
updateFrequency 10; // each 20 timesteps, update neighbor list
cellExtent 0.6; // bounding box for particle-wall search (> 0.5)
}
}

View File

@ -0,0 +1,46 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particleInsertion;
objectType dicrionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
active yes; // is insertion active?
collisionCheck No; // not implemented for yes
/*
five layers of particles are packed one-by-one using 5 insertion steps.
*/
layer0
{
type cylinderRegion; // type of insertion region
rate 5000; // insertion rate (particles/s)
startTime 0; // (s)
endTime 100; // (s)
interval 0.03; //s
cylinderRegionInfo
{
radius 0.09; // radius of cylinder (m)
p1 (0.22 0.73 0.25); // (m,m,m)
p2 (0.22 0.742 0.25); // (m,m,m)
}
setFields
{
velocity realx3 (0.0 -0.6 -0); // initial velocity of inserted particles
}
mixture
{
sphere1 1; // mixture composition of inserted particles
}
}

View File

@ -0,0 +1,12 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName sphereDict;
objectType sphereShape;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
names (sphere1); // names of shapes
diameters (0.01); // diameter of shapes
materials (prop1); // material names for shapes

View File

@ -0,0 +1,7 @@
#!/bin/sh
cd ${0%/*} || exit 1 # Run from this directory
ls | grep -P "^(([0-9]+\.?[0-9]*)|(\.[0-9]+))$" | xargs -d"\n" rm -rf
rm -rf VTK
#------------------------------------------------------------------------------

View File

@ -0,0 +1,21 @@
#!/bin/sh
cd ${0%/*} || exit 1 # Run from this directory
echo "\n<--------------------------------------------------------------------->"
echo "1) Creating particles"
echo "<--------------------------------------------------------------------->\n"
particlesPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "2) Creating geometry"
echo "<--------------------------------------------------------------------->\n"
geometryPhasicFlow
echo "\n<--------------------------------------------------------------------->"
echo "3) Running the case"
echo "<--------------------------------------------------------------------->\n"
sphereGranFlow
#------------------------------------------------------------------------------

View File

@ -0,0 +1,45 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName geometryDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// motion model: rotating object around an axis
motionModel rotatingAxisMotion;
surfaces
{
helix
{
type stlWall; // type of the wall
file helix.stl; // file name in stl folder
material prop1; // material name of this wall
motion rotAxis; // motion component name
}
shell
{
type stlWall; // type of the wall
file shell.stl; // file name in stl folder
material prop1; // material name of this wall
motion none; // motion component name
}
}
rotatingAxisMotionInfo
{
rotAxis
{
p1 (1.09635 0.2010556 0.22313511); // first point for the axis of rotation
p2 (0.0957492 0.201556 0.22313511); // second point for the axis of rotation
omega 3; // rotation speed (rad/s)
startTime 5;
endTime 30;
}
}

View File

@ -0,0 +1,40 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName particlesDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
// positions particles
positionParticles
{
method empty; // creates the required fields with zero particles (empty).
maxNumberOfParticles 50000; // maximum number of particles in the simulation
mortonSorting Yes; // perform initial sorting based on morton
}
setFields
{
defaultValue
{
// linear velocity (m/s)
velocity realx3 (0 0 0);
// linear acceleration (m/s2)
acceleration realx3 (0 0 0);
// rotational velocity (rad/s)
rVelocity realx3 (0 0 0);
// name of the particle shape
shapeName word sphere1;
}
selectors
{}
}

View File

@ -0,0 +1,38 @@
/* -------------------------------*- C++ -*--------------------------------- *\
| phasicFlow File |
| copyright: www.cemf.ir |
\* ------------------------------------------------------------------------- */
objectName settingsDict;
objectType dictionary;
fileFormat ASCII;
/*---------------------------------------------------------------------------*/
run layerdSiloFilling;
dt 0.0001; // time step for integration (s)
startTime 0; // start time for simulation
endTime 20; // end time for simulation
saveInterval 0.05; // time interval for saving the simulation
timePrecision 6; // maximum number of digits for time folder
g (0 -9.8 0); // gravity vector (m/s2)
/*
Simulation domain
every particles that goes outside this domain is deleted.
*/
domain
{
min (0.0 -0.06 0.001);
max (1.2 1 0.5);
}
integrationMethod AdamsBashforth3; // integration method
timersReport Yes; // report timers?
timersReportInterval 0.01; // time interval for reporting timers

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff