Getting Started with Zoltan: a Short Tutorial*

Karen D. Devine!, Erik G. Boman', Lee Ann Riesen', Umit V. Catalyurek?
Cédric Chevalier!

! Sandia National Laboratories™, Scalable Algorithms Department
Albuquerque, NM 87185-1318, USA
{kddevin,egboman,lafisk,ccheval}@sandia.gov
2 Ohio State University, Biomedical Informatics Department
Columbus, OH 43210, USA
umit@bmi.osu.edu

Abstract. The Zoltan library is a toolkit of parallel combinatorial al-
gorithms for unstructured and/or adaptive computations. In this paper,
we describe the most significant tools in Zoltan: dynamic partitioning,
graph coloring and ordering. We also describe how to obtain, build, and
use Zoltan in parallel applications.

Keywords. Parallel Computing, Partitioning, Load Balancing, Color-
ing, Ordering.

1 Introduction

The Zoltan library [1] is a toolkit of combinatorial algorithms for parallel, un-
structured, and/or adaptive scientific applications. Its data-structure neutral de-
sign allows Zoltan to be used by a wide range of applications, including adaptive
finite element methods, particle simulations, linear solvers and preconditioners,
crash and contact detection, and electrical circuit simulations. Zoltan’s largest
component is a suite of dynamic load-balancing and partitioning algorithms
that increase applications’ parallel performance by reducing processor idle time.
Zoltan also has graph coloring and graph ordering algorithms useful in, e.g.,
task schedulers, parallel preconditioners and linear solvers. In addition to na-
tive implementations of many algorithms, Zoltan interfaces to the graph and
hypergraph partitioning libraries PT-Scotch [2], PaToH [3] and ParMETIS [4].

This paper provides a short guide to common uses of Zoltan. It describes
how to obtain and build zoltan, use Zoltan in application programs, provide
application data to Zoltan, and perform load balancing, coloring and ordering

* This work was supported by the U.S. Department of Energy’s Office of Science
through the CSCAPES SciDAC Institute; by the U.S. National Science Foundation
under Grants #CNS-0643969 and #CNS-0403342; by Ohio Supercomputing Center.
T Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin company, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94A1.85000.

2 K.D. Devine, E.G. Boman, L.A. Riesen, U.V. Catalyurek, C. Chevalier

using Zoltan. At the end of the paper, we list several resources for obtaining
more information about Zoltan.

Throughout the paper, we refer the reader to specific pages of the Zoltan
User’s Guide [5]. The Zoltan User’s Guide is included in the Zoltan distribution
in Zoltan/doc/Zoltan html/ug html; it is also on-line at http://www.cs.sandia.gov/
Zoltan/ug html. In this paper, references to specific pages are given as the correspond-
ing file in these directories.

2 Downloading and Building Zoltan

Zoltan is available both as a stand-alone software package, or as a package within the
Trilinos [6] framework. You can download Zoltan from the Zoltan website: http://www.
cs.sandia.gov/Zoltan; untarring the file produces the Zoltan main directory Zoltan.
In Trilinos v9 or later, the Zoltan main directory is Trilinos/packages/zoltan.

Zoltan requires MPI for interprocessor communication. To build Zoltan, a C com-
piler is required. C++ and Fortran90 compilers are needed only if users want Zoltan’s
optional Fortran90 and C++ interfaces. In this paper, we focus on the C interface.

Zoltan must be built in a separate, user-created directory (e.g., Zoltan/BuildDir),
not in the main Zoltan directory. To build Zoltan using Autotools, users first run (in
their build directory) the auto-configuration tool configure and then compile using
make. The configuration tool allows paths to third-party libraries such as ParMETIS,
PT-Scotch and PaToH to be specified through arguments to configure. These options
can be seen with the following command issued in their build directory: . ./configure --help.

Although Zoltan can be built to run without MPI, most Zoltan users prefer a
parallel build that runs on multiple processors. These users must link with MPI and
may choose to compile with the MPI compilers. To enable the parallel build, users must
use the —--enable-mpi option; they can also require that MPI compilers (e.g., mpicc,
mpic++) be used by specifying -—with-mpi-compilers.

The script in Figure 1 is an example of configuration and build commands us-
ing Autotools. It specifies that Zoltan should be built with both the ParMETIS and
PT-Scotch interfaces. Paths to both ParMETIS and PT-Scotch are given. The pre-
fix option states where Zoltan should be installed; in this example, Zoltan’s include
files will be installed in /home/zoltan/BuildDir/include, and the libraries will be
in /home/zoltan/BuildDir/1ib. Zoltan is a library, so no executables are installed.
Additional examples are in the directory Zoltan/SampleConfigurationScripts.

Zoltan also has a manual build system for users who cannot or choose to not
use Autotools. Details of this system are in the Zoltan User’s Guide: ug_usage.html.
Zoltan’s Fortran90 interface cannot be built with Autotools; the manual build system
must be used for the Fortran90 interface.

Users should include file zoltan.h in all source files accessing Zoltan. All applica-
tions using Zoltan must link with -1zoltan, MPI and any third-party libraries specified
in the Zoltan build.

3 Basic Zoltan Usage

Figure 2 shows the basic use of Zoltan in an application needing dynamic load balanc-
ing. The application begins as usual, reading input files and creating its data struc-
tures. Then it calls several Zoltan set-up functions. It initializes Zoltan by calling

http://www.cs.sandia.gov/Zoltan/ug_html
http://www.cs.sandia.gov/Zoltan/ug_html
http://www.cs.sandia.gov/Zoltan
http://www.cs.sandia.gov/Zoltan

Getting Started with Zoltan 3

../configure \

--prefix=/home/zoltan/BuildDir \

--enable-mpi --with-mpi-compilers --with-gnumake \
--enable-zoltan \

--with-scotch \
--with-scotch-incdir="/Net/local/proj/all/src/Scotch5" \
—--with-scotch-libdir="/Net/local/proj/linux64/1ib/Scotch5" \
--with-parmetis \
--with-parmetis-incdir="/Net/local/proj/all/src/ParMETIS3" \
--with-parmetis-1libdir="/Net/local/proj/linux64/1ib/ParMETIS3"
make everything

make install

Fig. 1. Example script for configuring and building Zoltan using Autotools.

Zoltan Initialize, which checks that MPI is initialized. It also calls Zoltan Create
to allocate memory for Zoltan; a pointer to this memory is returned by Zoltan Create
and must be passed to all other Zoltan functions. Next, by calling Zoltan_Set _Param,
the application selects the partitioning method it wishes to use and sets method-specific
parameters. It registers pointers to callback functions through calls to Zoltan_Set_Fn.
These callback functions provide Zoltan with information about the application data;
they are described in Section 4. After the set-up is completed, the application computes
a new partition by calling Zoltan LB Partition and moves the data to its new part
assignments by calling Zoltan Migrate. After migration, Zoltan LB Free Data frees
the arrays returned by Zoltan LB Partition. The application then proceeds with its
computation using the newly balanced partition. Partitioning and computation can
occur in many iterations of the application, with part assignments changing to adjust
for changes in the computation. After the iterations are completed, the application
calls Zoltan Destroy to free the memory allocated in Zoltan Create, and completes
its execution by returning the results of the computation.

The basic set-up of Zoltan — initializing, allocating memory, setting parameters,
and registering callback functions, and freeing memory — is the same regardless of
whether one uses Zoltan for partitioning, ordering, or coloring. Only the operations in
the iteration loop would change if ordering or coloring were needed. Syntax for set-up
functions is in the Zoltan User’s Guide: ug_interface_init.html.

4 Describing Application Data to Zoltan

Zoltan is designed to support a wide range of applications whose basic data entities can
include (but are not limited to) finite elements, particles, matrix rows/columns/nonzeros,
circuits, and agents. Rather than limit Zoltan’s capabilities to a specific entity, we con-
sider an entity to be merely an object or thing on which Zoltan operates. Each object
must have a GlobalID: a name that is unique across all processes. Each GloballD is
an array of unsigned integers. Examples of single-integer GlobalIDs include global ele-
ment numbers and global matrix row numbers. Applications that don’t support global
numbering can use, e.g., a two-integer GlobalID consisting of the process rank of the

4 K.D. Devine, E.G. Boman, L.A. Riesen, U.V. Catalyurek, C. Chevalier

INITIALIZE APPLICATION
- Read files, create data structures, etc.

v

Perform one-time Zoltan set-up.

- Initialize Zoltan: Zoltan_lInitialize

- Allocate memory for use by Zoltan: Zoltan_Create

- Select Zoltan partitioning method: Zoltan_Set_Params

- Set partitioning parameters: Zoltan_Set_Params

- Register callback functions describing data: Zoltan_Set_Fn

|

—ﬁ (Re)partition application data: Zoltan_LB_Partition ‘

’ Move data to new part assignments: Zoltan_Migrate ‘

!

’ Free Zoltan_LB_Partition’s results: Zoltan_LB_Free_Data ‘

!

PERFORM APPLICATION COMPUTATIONS
- Matrix fill, linear solve, particle push, etc.

Free Zoltan’s memory: Zoltan_Destroy

v
COMPLETE APPLICATION
- Write files, visualize results, etc.

Fig. 2. Use of Zoltan in a typical dynamic application. Calls to Zoltan functions
are shown in red; application operations are in blue.

process that owns the entity and a local entity counter in the process. Zoltan uses these
GlobalIDs only to identify objects, so any unique naming scheme is acceptable.

Zoltan also gives users the option of providing a LocallID for each object. Each
LocallD is also an array of unsigned integers. Examples of useful LocalIDs include ob-
jects’ indices in an array of data and pointers to the objects in memory. Using LocalIDs,
applications can quickly locate objects without having to map from GlobalIDs to the
local location of the objects. More information on GlobalIDs and LocallDs is in the
Zoltan User’s Guide: ug-usage.html.

Just as Zoltan isn’t limited to use for specific types of entities, it is also not limited to
use with specific application data structures. Instead, the interface to Zoltan completely
separates Zoltan’s data structures from applications’ data structures. This separation
is achieved through the use of callback functions — small functions written by the
user that access the user’s data structures and return needed data to Zoltan. When
applications call, say, Zoltan LB Partition, Zoltan calls these user-provided callback
functions to get the application data it needs to do partitioning.

At a minimum, users must write a ZOLTAN_NUM_OBJ_FN that returns the number of
objects owned by a process, and a ZOLTAN_OBJ_LIST_FN that returns the GloballIDs
and optional LocalIDs for those objects. Other callback functions needed depend on
the operations to be performed by Zoltan. Geometric partitioning methods, for exam-
ple, require a ZOLTAN_NUM_GEOM_FN that returns the geometric dimension of the data
and a ZOLTAN_GEOM_MULTI_FN that returns each object’s geometric coordinates. Graph-

Getting Started with Zoltan 5

based partitioning, coloring and ordering algorithms require the graph-based call-
backs ZOLTAN_NUM_EDGE_MULTI_FN and ZOLTAN_EDGE_LIST_MULTI.FN to return informa-
tion about connectivity between objects. A list of commonly used functions is provided
in Figure 3; full details of callbacks are in the Zoltan User’s Guide: ug_query_1b.html.

Users register pointers to their callback functions by calling Zoltan_Set_Fn. In each
Zoltan Set_Fn call, users provide the function pointer and the function type for one
callback function. Users may also provide a pointer to one of their data structures to
allow that data structure to be accessed in the callback function. Whenever Zoltan calls
a callback function, the data pointer provided at registration is passed to the function.

An example of a Zoltan_Geom Multi_Fn callback function for a particle based simu-
lation is included in Figure 4. For each GlobalID passed to the function, it returns the
coordinates of the particle corresponding to the GlobalID. The function uses LocalIDs
to locate the requested particles in the application data structure. The user’s data
pointer registered with user_geom multi_fn in Zoltan_Set_Fn is provided through the
void *data pointer. All arrays that callback functions fill (e.g., the geomVec array in
Figure 4) are allocated by Zoltan.

Callback ‘Return values
All methods

ZOLTAN_NUM_OBJ_FN Number of objects on processor
ZOLTAN_OBJ_LIST FN List of object IDs and weights

Geometric partitioning
ZOLTAN_NUM_GEQM_FN Dimensionality of domain
ZOLTAN_GEOM_MULTI_FN Coordinates of items

Hypergraph partitioning
ZOLTAN_HG_SIZE_CS_FN Number of hyperedge pins
ZOLTAN_HG_CS_FN List of hyperedge pins
ZOLTAN_HG_SIZE EDGE WTS_FN |Number of hyperedge weights
ZOLTAN_HG_EDGE_WTS_FN List of hyperedge weights

Graph/hypergraph partitioning, ordering, coloring
ZOLTAN_NUM_EDGE_MULTI_FN Number of graph edges
ZOLTAN_EDGE_LIST MULTI_FN List of graph edges and weights
Data migration

ZOLTAN_PACK_0BJ_MULTI_FN Object data in a communication buffer
ZOLTAN_UNPACK_OBJ MULTI_FN |Object data inserted in data structure

Fig. 3. Commonly used Zoltan callback functions and their return values.

5 Using Zoltan for Load Balancing and Partitioning

The goal of load balancing and partitioning is dividing data and work among processes
in a way that minimizes the overall application execution time. The goal is most often
achieved when work is distributed evenly to processes (eliminating process idle time)
while at the same time minimizing communication among processes. A partition is an
assignment of data and work to subsets called parts that are mapped to processes.
Static partitioning is done once at the beginning of an application, with the resulting

6 K.D. Devine, E.G. Boman, L.A. Riesen, U.V. Catalyurek, C. Chevalier

#include "zoltan.h"
/* Application data type for particle simulation. */
struct Particle {

int id;

double x, y, z;

/* ... solution values, etc. ... */
};

/* Return coordinates for objects requested by Zoltan in globallDs array. */
void user_geom_multi_fn(void *data, int nge, int nle, int numObj,
ZOLTAN_ID_PTR globallDs, ZOLTAN_ID_PTR locallDs,
int dim, double *geomVec, int *err)

/* Cast data pointer provided in Zoltan_Set_Fn to application data type. */
/* Application data is an array of Particle structures. */
struct Particle *user_particles = (struct Particle *) data;

/* Assume for this example that each globalID and locallD is one integer. */
/* Each globalID is a global particle number; each locallD is an index x/
/* into the user’s array of Particles. x/
if (nge '= 1 || nle != 1) {*err = ZOLTAN_FATAL; return;}

/* Loop over objects for which coordinates are requested */

int i, j = 0;

for (i = 0; i < numObj; i++) {
/* Copy the coordinates for the object globalID[i] (with localID[i]) =/
/* into the geomVec vector. Note that Zoltan allocates geomVec. */
geomVec[j++] = user_particles[localIDs[i]].x;
if (dim > 1) geomVec[j++] = user_particles[locallIDs[i]].y;
if (dim > 2) geomVec[j++] = user_particles[localIDs[i]].z;

}

*err = ZOLTAN_OK;

Fig.4. An example of a ZOLTAN_GEOM_MULTI_FN callback for a particle
simulation.

Getting Started with Zoltan 7

partition used throughout the computation. Dynamic partitioning is needed in appli-
cations whose data locality or work loads vary during the course of the computation.
Dynamic partitioning methods have the additional goal of minimizing the cost to move
data from the existing partition to the new one.

No single partitioning algorithm is effective for all applications. Applications such
as contact detection and particle methods require partitioners that preserve geometric
locality of data, while linear solvers and finite element methods benefit from exploiting
the structure of interdependencies of their data. Dynamic applications require fast
partitioners with low data movement costs, while static applications can tolerate greater
partitioning time in exchange for higher quality partitions.

For this reason, we have included a suite of partitioning algorithms in Zoltan. These
algorithms fall into three main catagories: geometric, graph-based, and hypergraph-
based. Each category requires different callback functions (see Figure 3). Users select
a method by setting the Zoltan parameter LB_METHOD. They specify whether they are
want partitioning (where existing partition is ignored in computing the new one) or
repartitioning (where the existing partition is accounted for to reduce data movement
costs) with the parameter LB_APPROACH. By setting method-specific parameters, users
can further customize their choice of partitioning algorithms. High-level Zoltan par-
titioning parameters are described in the Zoltan User’s Guide: ug_alg.html; method
specific parameters are listed in the User’s Guide with each method’s description.

All partitioners require the ZOLTAN_NUM_OBJ_FN and ZOLTAN_OBJ_LIST_FN callbacks
to get the objects to be partitioned. Users may also specify weights representing com-
putation costs with each object; if no weights are specified, Zoltan assumes each ob-
ject has unit weight. Users may also adjust the desired number of parts (parameters
NUM_GLOBAL_PARTS and/or NUM_LOCAL_PARTS), the desired size of each part (function
Zoltan LB_Set Part_Sizes), and the amount of load imbalance acceptable in the new
partition (parameter IMBALANCE_TOL).

Geometric methods partition data based on their geometric locality. Objects that
are physically close to each other are assigned to the same process. Geometric meth-
ods in Zoltan include Recursive Coordinate Bisection [7] (RCB), Recursive Inertial
Bisection [8,9] (RIB), and Space-Filling Curve partitioning [10,11] (HSFC). Geometric
methods are fast and easy to use, making them appropriate for dynamic applications
requiring frequent repartitioning. Because they preserve geometric locality of objects,
they are ideal for contact detection and particle simulations. However, because they do
not explicitly model communication, they can produce partitions with relatively high
communication costs.

Graph partitioning is perhaps the most well-known partitioning method. The ap-
plication is represented as a graph, where data objects are vertices and pairwise data
dependencies are edges. The graph partitioning problem is then to partition the vertices
into equal-weighted parts, while minimizing the weight of edges with endpoints in differ-
ent parts. This is an NP-hard optimization problem, but fast multilevel algorithms and
software produce good solutions in practice [12,13]. In general, graph partitioning pro-
duces better quality partitions than geometric methods, but the partitions take longer
to compute. Zoltan includes interfaces to two popular graph partitioning libraries: PT-
Scotch [2] and ParMETIS [4]. It also has native graph-partitioning capabilities through
its hypergraph partitioner.

Hypergraph partitioning improves the communication model used in graph par-
titioning. Like the graph model, the hypergraph model represents data objects as
vertices. But hypergraph edges represent data dependencies among among sets of ob-
jects, not just pairs. Unlike the graph model, the hypergraph model can represent

8 K.D. Devine, E.G. Boman, L.A. Riesen, U.V. Catalyurek, C. Chevalier

non-symmetric dependencies between objects. Moreover, it more accurately represents
communication volume for edges that cross part boundaries, leading to higher qual-
ity partitions. The main drawback of hypergraph methods is that they take longer to
run than graph algorithms. Zoltan has a native parallel hypergraph partitioner [14,15]
(PHG), as well as an interface to the serial hypergraph partitioner PaToH [3].

After selecting a partitioning method, users call Zoltan LB Partition to compute
the new data distribution. This call only computes a suggested partition; it does not
actually migrate data to new parts. Zoltan LB _Partition returns lists of objects to be
exported and/or imported to new parts, along with their destinations. These arrays
are exactly the input needed by Zoltan’s data migration function Zoltan Migrate, de-
scribed below. Because their size cannot be pre-determined by the user, the returned ar-
rays are allocated by Zoltan; they should be freed later by function Zoltan LB Free Part.
More details about Zoltan partitioning are in the Zoltan User’s Guide: ug_alg.html
and ug-interface_1b.html.

6 Using Zoltan for Data Migration

Data migration is, perhaps, the most complicated step in doing dynamic partitioning.
After a new partition is computed, application data must be removed from its old
part and added to its new part, and interprocessor dependencies between data must
be re-established. Because Zoltan does not have information about the application’s
data structures, it cannot modify those data structures directly. It can, however, help
with the communication needed to send objects from their current parts to their new
ones. Applications may choose to migrate data on their own, or they can use the
Zoltan Migrate function to help with migration. Zoltan Migrate accepts as input the
import and/or export lists returned by Zoltan LB Partition.

As in partitioning, Zoltan uses callback functions to access applications’ data for
data migration. To use Zoltan Migrate, users must provide a Zoltan Pack_Obj_Multi_Fn
that packs data that is being sent to a new part into a communication buffer. Users must
also provide a Zoltan _Unpack_Obj_Multi_Fn that inserts received data into a part’s data
structures. The additional callbacks (Zoltan Pre Migrate PP_Fn, Zoltan Mid Migrate PP _Fn,
and Zoltan Post Migrate PP_Fn) allow the user to specify operations that should oc-
cur before data is packed, between the send and the receive, and after data is un-
packed, respectively. More details are in the Zoltan User’s Guide: ug_query mig.html
and ug-interface mig.html.

7 Using Zoltan for Coloring

Zoltan’s parallel coloring algorithms are based on the framework described in [?]. Col-
oring is often used for identifying concurrency in parallel computations and efficiently
computing sparse Jacobian and Hessian matrices. The problem input is described as
a graph, using the graph-based callbacks in Figure 3. Each object or task is a graph
vertex, with graph edges describing dependencies between the vertices. In distance-1
coloring, vertices are assigned an integer label such that no two adjacent vertices have
the same label. In distance-2 coloring, vertices are labeled such that no two vertices
connected by a path of length one or two share the same label.

Users call the function Zoltan Color to compute a coloring. Zoltan Color re-
turns, for each object on a process, the label assigned to the object. Before call-
ing Zoltan Color, users must allocate the arrays that return the objects and labels.

Getting Started with Zoltan 9

Zoltan parameters control coloring distance (parameter DISTANCE), method (parame-
ter COLORING_METHOD), and performance characteristics. Zoltan’s coloring capability is
described in the Zoltan User’s Guide: ug_color.html and ug_interface_color.html.

8 Using Zoltan for Ordering

Zoltan provides interfaces for vertex ordering of graphs (sparse matrices). The parallel
ordering algorithms in Zoltan are provided through interfaces to the PT-Scotch [2] and
ParMETIS [4] libraries; to do ordering, users must specify one of these libraries during
Zoltan’s build process. Both libraries perform parallel nested-dissection ordering [16],
which is typically used to reduce fill in direct solvers and Cholesky factorizations. As in
coloring, the problem input is described as a graph, using the graph-based callbacks in
Figure 3. Ordering is currently available only for undirected graphs representing sparse
symmetric matrices. Here graph vertices represent matrix rows (and columns), while
graph edges represent matrix nonzeros.

Users call the Zoltan function Zoltan Order to compute an ordering. Zoltan_Order
returns the permutation and inverse permutation vectors describing the new ordering.
Before calling Zoltan Order, users must allocate the arrays that return the objects
and permutations. Additional Zoltan functions return information about the separators
used in computing the nested-dissection ordering. More information on Zoltan’s order-
ing interface is in the Zoltan User’s Guide: ug_order.html and ug_interface_order.html.

9 Resources for Further Information about Zoltan

Other tools available in Zoltan include distributed data directories and unstructured
communication tools. Distributed data directories provide memory efficient, constant-
time look-ups of off-processor data. They have been used for updating ghost informa-
tion and building communication maps in finite element and particle simulations. The
unstructured communication tools provide simple interfaces to complicated communi-
cation patterns. They are used throughout Zoltan, and are available to applications as
well for, say, mapping data between multiple decompositions in multiphase simulations.
These utilities are described in the Zoltan User’s Guide: ug-util.html.

Examples using Zoltan are included with the Zoltan distribution in the directory
Zoltan/examples. The examples exercise both the C and C++ interfaces to Zoltan.
Graph, geometric, and hypergraph callbacks are included for simple input data.

Zoltan news is listed at the Zoltan homepage: http://www.cs.sandia.gov/Zoltan.
Detailed specification of Zoltan’s interface and callbacks functions is in the Zoltan
User’s Guide: http://www.cs.sandia.gov/Zoltan/ug html/ug.html. Questions about
Zoltan can be emailed to zoltan-users@software.sandia.gov.

References

1. Devine, K., Boman, E., Heaphy, R., Hendrickson, B., Vaughan, C.: Zoltan data
management services for parallel dynamic applications. Computing in Science and
Engineering 4 (2002) 90-97

2. Pelligrini, F.: PT-SCOTCH 5.1 user’s guide. Research rep., LaBRI (2008)

http://www.cs.sandia.gov/Zoltan
http://www.cs.sandia.gov/Zoltan/ug_html/ug.html

10

10.

11.

12.

13.

14.

15.

16.

K.D. Devine, E.G. Boman, L.A. Riesen, U.V. Catalyurek, C. Chevalier

Catalyiirek, U.V., Aykanat, C.: PaToH: A Multilevel Hypergraph Partition-
ing Tool, Version 3.0. Bilkent University, Department of Computer Engineer-
ing, Ankara, 06533 Turkey. PaToH is available at http://bmi.osu.edu/~umit/
software.htm. (1999)

Karypis, G., Schloegel, K., Kumar, V.: Parmetis: Parallel graph partitioning and
sparse matrix ordering library, version 3.1. Technical report, Dept. Computer Sci-
ence, University of Minnesota (2003) http://www-users.cs.umn.edu/~karypis/
metis/parmetis/download.html.

Boman, E., Devine, K., Heaphy, R., Hendrickson, B., Leung, V., Riesen, L.A.,
Vaughan, C., Catalyurek, U., Bozdag, D., Mitchell, W., Teresco, J.: Zoltan 3.0: Par-
allel Partitioning, Load Balancing, and Data-Management Services; User’s Guide.
Sandia National Laboratories, Albuquerque, NM. (2007) Tech. Report SAND2007-
4748W http://wuw.cs.sandia.gov/Zoltan/ug_html/ug.html.

Heroux, M., Bartlett, R., Howle, V., Hoekstra, R., Hu, J., Kolda, T., Lehoucq,
R., Long, K., Pawlowski, R., Phipps, E., Salinger, A., Thornquist, H., Tuminaro,
R., Willenbring, J., Williams, A.: An overview of Trilinos. Technical Report
SAND2003-2927, Sandia National Laboratories, Albuquerque, NM (2003)

Berger, M.J., Bokhari, S.H.: A partitioning strategy for nonuniform problems on
multiprocessors. IEEE Trans. Computers C-36 (1987) 570-580

Simon, H.D.: Partitioning of unstructured problems for parallel processing. Comp.
Sys. Engng. 2 (1991) 135-148

Taylor, V.E., Nour-Omid, B.: A study of the factorization fill-in for a parallel
implementation of the finite element method. Int. J. Numer. Meth. Engng. 37
(1994) 3809-3823

Warren, M.S., Salmon, J.K.: A parallel hashed oct-tree n-body algorithm. In:
Proc. Supercomputing ’93, Portland, OR (1993)

Pilkington, J.R., Baden, S.B.: Partitioning with spacefilling curves. CSE Tech-
nical Report CS94-349, Dept. Computer Science and Engineering, University of
California, San Diego, CA (1994)

Bui, T.N., Jones, C.: A heuristic for reducing fill-in sparse matrix factorization. In:
Proc. 6th SIAM Conf. Parallel Processing for Scientific Computing, SIAM (1993)
445-452

Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. In:
Proc. Supercomputing '95, ACM (1995)

Devine, K., Boman, E., Heaphy, R., Bisseling, R., Catalyurek, U.: Parallel hyper-
graph partitioning for scientific computing. In: Proc. of 20th International Parallel
and Distributed Processing Symposium (IPDPS’06), IEEE (2006)

Catalyurek, U., Boman, E., Devine, K., Bozdag, D., Heaphy, R., Riesen, L.:
Hypergraph-based dynamic load balancing for adaptive scientific computations.
In: Proc. of 21th International Parallel and Distributed Processing Symposium
(IPDPS’07), IEEE (2007)

George, A.: Nested dissection of a regular finite-element mesh. STAM Journal on
Numerical Ananlysis 10 (1973) 345-363

http://bmi.osu.edu/~umit/software.htm
http://bmi.osu.edu/~umit/software.htm
http://www-users.cs.umn.edu/~karypis/metis/parmetis/download.html
http://www-users.cs.umn.edu/~karypis/metis/parmetis/download.html
http://www.cs.sandia.gov/Zoltan/ug_html/ug.html

	Getting Started with Zoltan: a Short Tutorial
	Karen D. Devine, Erik G. Boman, Lee Ann Riesen, Umit V. Catalyurek Cédric Chevalier

