
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energyʼs National Nuclear Security Administration 

 under contract DE-AC04-94AL85000.

Tutorial: The Zoltan Toolkit

Cedric Chevalier
Erik Boman, Karen Devine, Vitus Leung, Lee Ann Riesen

Sandia National Laboratories, NM

Umit Çatalyürek, Doruk Bozdag
Ohio State University

ACTS Workshop, August 2009

Slide 2

Outline
• High-level view of Zoltan
• Requirements, data models, and interface
• Dynamic Load Balancing and Partitioning
• Matrix Ordering
• Graph Coloring
• Utilities
• Alternate Interfaces
• Future Directions

Slide 3

The Zoltan Toolkit

Unstructured Communication

Data Migration Matrix Ordering

Dynamic Load
Balancing

Distributed Data Directories

A B C
0 1 0

D E F
2 1 0

G H I
1 2 1

•  Library of data management services for unstructured, dynamic
and/or adaptive computations.

Graph Coloring

Slide 4

Zoltan System Assumptions
• Assume distributed memory model.
• Data decomposition + “Owner computes”:

–  The data is distributed among the processors.
–  The owner performs all computation on its data.
– Data distribution defines work assignment.
– Data dependencies among data items owned by different

processors incur communication.
• Zoltan is available in Trilinos since version 9.0
• Requirements:

– MPI
– C compiler
– Autotools or CMake.

Slide 5 Zoltan Supports
Many Applications

•  Different applications, requirements, data structures.

Multiphysics simulations

x b A

=

Linear solvers &
preconditioners

Adaptive mesh refinement

Crash simulations

Particle methods

Parallel electronics networks

1
2 Vs

SOURCE_VOLTAGE

1
2 Rs

R

1
2 Cm012

C

1
2 Rg02

R

1
2 Rg01

R

1
2 C01

C

1
2 C02

C
1 2 L2

INDUCTOR

1 2 L1
INDUCTOR 1 2 R1

R

1 2 R2
R

1
2 Rl

R

1
2 Rg1

R

1
2 Rg2

R

1
2 C2

C

1
2 C1

C

1
2 Cm12

C

Slide 6

Zoltan Interface Design
• Common interface to each class of tools.
• Tool/method specified with user parameters.

• Data-structure neutral design.
–  Supports wide range of applications and data structures.
–  Imposes no restrictions on application’s data structures.
– Application does not have to build Zoltan’s data

structures.

Slide 7

Zoltan Interface
• Simple, easy-to-use interface.

– Small number of callable Zoltan functions.
– Callable from C, C++, Fortran.

• Requirement: Unique global IDs for objects to
be partitioned/ordered/colored. For example:

– Global element number.
– Global matrix row number.
–  (Processor number, local element number)
–  (Processor number, local particle number)

Slide 8

Zoltan Application Interface
• Application interface:

–  Zoltan queries the application for needed info.
•  IDs of objects, coordinates, relationships to other objects.

– Application provides simple functions to answer queries.
–  Small extra costs in memory and function-call overhead.

• Query mechanism supports…
– Geometric algorithms

•  Queries for dimensions, coordinates, etc.
– Hypergraph- and graph-based algorithms

•  Queries for edge lists, edge weights, etc.
–  Tree-based algorithms

•  Queries for parent/child relationships, etc.
• Once query functions are implemented, application can

access all Zoltan functionality.
– Can switch between algorithms by setting parameters.

Slide 9

(Re)partition
(Zoltan_LB_Partition)

Zoltan Application Interface

Initialize Zoltan
(Zoltan_Initialize,

Zoltan_Create)

Select Method and
Parameters

(Zoltan_Set_Params)

Register
query functions
(Zoltan_Set_Fn) COMPUTE

Move data
(Zoltan_Migrate)

Clean up
(Zoltan_Destroy)

APPLICATION
Zoltan_LB_Partition:
•  Call query functions.
•  Build data structures.
•  Compute new

decomposition.
•  Return import/export

lists.

Zoltan_Migrate:
•  Call packing query

functions for exports.
•  Send exports.
•  Receive imports.
•  Call unpacking query

functions for imports.

ZOLTAN

Slide 10

Zoltan Query Functions
General Query Functions
 ZOLTAN_NUM_OBJ_FN
 Number of items on processor
 ZOLTAN_OBJ_LIST_FN
 List of item IDs and weights.
Geometric Query Functions
 ZOLTAN_NUM_GEOM_FN
 Dimensionality of domain.
 ZOLTAN_GEOM_FN
 Coordinates of items.
Hypergraph Query Functions
 ZOLTAN_HG_SIZE_CS_FN
 Number of hyperedge pins.
 ZOLTAN_HG_CS_FN
 List of hyperedge pins.
 ZOLTAN_HG_SIZE_EDGE_WTS_FN
 Number of hyperedge weights.
 ZOLTAN_HG_EDGE_WTS_FN
 List of hyperedge weights.
Graph Query Functions
 ZOLTAN_NUM_EDGE_FN
 Number of graph edges.
 ZOLTAN_EDGE_LIST_FN
 List of graph edges and weights.

Slide 11

Using Zoltan in Your Application

1.  Decide what your objects are.
  Elements? Grid points? Matrix rows? Particles?

2.  Decide which tools (partitioning/ordering/coloring/utilities)
and class of method (geometric/graph/hypergraph) to use.

3.  Download Zoltan.
  http://www.cs.sandia.gov/Zoltan (or http://trilinos.sandia.gov)

4.  Write required query functions for your application.
  Required functions are listed with each method in Zoltan

User’s Guide.
5.  Call Zoltan from your application.
6.  #include “zoltan.h” in files calling Zoltan.
7.  Configure and build Zoltan.
8.  Compile application; link with libzoltan.a.

  mpicc application.c -lzoltan

Slide 12

Partitioning and Load Balancing
• Assignment of application data to processors for parallel

computation.
• Applied to grid points, elements, matrix rows, particles, ….

Slide 13

Partitioning Interface

Zoltan computes the difference (Δ) from current distribution
Choose between:
a)  Import lists (data to import from other procs)
b)  Export lists (data to export to other procs)
c)  Both (the default)

err = Zoltan_LB_Partition(zz,  
&changes, /* Flag indicating whether partition changed */ 
&numGidEntries, &numLidEntries, 
&numImport, /* objects to be imported to new part */ 
&importGlobalGids, &importLocalGids, &importProcs, &importToPart,  
&numExport, /* # objects to be exported from old part */ 
&exportGlobalGids, &exportLocalGids, &exportProcs, &exportToPart);

Slide 14

Static Partitioning

•  Static partitioning in an application:
–  Data partition is computed.
–  Data are distributed according to partition map.
–  Application computes.

•  Ideal partition:
–  Processor idle time is minimized.
–  Inter-processor communication costs are kept low.

•  Zoltan_Set_Param(zz, “LB_APPROACH”, “PARTITION”);

Initialize
Application

Partition
Data

Distribute
Data

Compute
Solutions

Output
& End

Slide 15 Dynamic Repartitioning
(a.k.a. Dynamic Load Balancing)

Initialize
Application

Partition
Data

Redistribute
Data

Compute
Solutions
& Adapt

Output
& End

•  Dynamic repartitioning (load balancing) in an application:
–  Data partition is computed.
–  Data are distributed according to partition map.
–  Application computes and, perhaps, adapts.
–  Process repeats until the application is done.

•  Ideal partition:
–  Processor idle time is minimized.
–  Inter-processor communication costs are kept low.
–  Cost to redistribute data is also kept low.

•  Zoltan_Set_Param(zz, “LB_APPROACH”, “REPARTITION”);

Slide 16 Zoltan Toolkit:
Suite of Partitioners

• No single partitioner works best for all applications.
–  Trade-offs:

•  Quality vs. speed.
•  Geometric locality vs. data dependencies.
•  High-data movement costs vs. tolerance for remapping.

• Application developers may not know which partitioner
is best for application.

• Zoltan contains suite of partitioning methods.
– Application changes only one parameter to switch

methods.
•  Zoltan_Set_Param(zz, “LB_METHOD”, “new_method_name”);

– Allows experimentation/comparisons to find most
effective partitioner for application.

Slide 17 Partitioning Algorithms
in the Zoltan Toolkit

Recursive Coordinate Bisection (Berger, Bokhari)
Recursive Inertial Bisection (Taylor, Nour-Omid)

Zoltan Graph Partitioning
ParMETIS (U. Minnesota)

Jostle (U. Greenwich)

Hypergraph Partitioning
Hypergraph Repartitioning
PaToH (Catalyurek & Aykanat)

Geometric (coordinate-based) methods

Combinatorial (topology-based) methods

Space Filling Curve Partitioning
 (Warren&Salmon, et al.)

Refinement-tree Partitioning (Mitchell)

Slide 18

Geometric Partitioning
• Zoltan_Set_Param(zz, “LB_METHOD”, “RCB”);

Zoltan_Set_Param(zz, “LB_METHOD”, “RIB”);
Zoltan_Set_Param(zz, “LB_METHOD”, “HSFC”);

• Partition based on geometric locality.
– Assign physically close objects to the same processor.

Recursive Coordinate Bisection (RCB)
Berger & Bokhari, 1987

Space Filling Curve Partitioning (HSFC)
Warren & Salmon, 1993;

Pilkington & Baden, 1994; Patra & Oden, 1995

Slide 19

Geometric Repartitioning
• No explicit control of migration costs, but…
•  Implicitly achieves low data redistribution costs.
• For small changes in data, cuts move only slightly,

resulting in little data redistribution.

Recursive Coordinate Bisection (RCB) Space Filling Curve Partitioning (HSFC)

Slide 20 Applications of
Geometric Partitioners

Parallel Volume Rendering

Crash Simulations
and Contact Detection

Adaptive Mesh Refinement
Particle Simulations

Slide 21 Geometric Methods:
 Advantages and Disadvantages

•  Advantages:
–  Easiest partitioners to use.
–  Conceptually simple; fast and inexpensive.
–  All processors can inexpensively know entire partition (e.g., for

global search in contact detection).
–  No connectivity info needed (e.g., particle methods).
–  Good on specialized geometries.

•  Disadvantages:
–  No explicit control of communication costs.
–  Mediocre partition quality.
–  Can generate disconnected subdomains for complex geometries.
–  Need coordinate information.

SLAC’S 55-cell Linear Accelerator with couplers:
One-dimensional RCB partition reduced runtime up
to 68% on 512 processor IBM SP3. (Wolf, Ko)

Slide 22 Auxiliary Capabilities for
Geometric Methods

• Zoltan can store cuts from RCB, RIB, and HSFC
inexpensively in each processor.
–  Zoltan_Set_Param(zz, “KEEP_CUTS”, “1”);

• Enables parallel geometric search without communication.
– Useful for contact detection, particle methods, rendering.

1st cut

2nd

2nd

3rd

3rd 3rd

3rd

*

Determine the part/processor
owning region with a given point.

Zoltan_LB_Point_PP_Assign

1st cut

2nd

2nd

3rd

3rd 3rd

3rd

Determine all parts/processors
overlapping a given region.
Zoltan_LB_Box_PP_Assign

Slide 23 For geometric partitioning
(RCB, RIB, HSFC), use …

General Query Functions
 ZOLTAN_NUM_OBJ_FN
 Number of items on processor
 ZOLTAN_OBJ_LIST_FN
 List of item IDs and weights.
Geometric Query Functions
 ZOLTAN_NUM_GEOM_FN
 Dimensionality of domain.
 ZOLTAN_GEOM_FN
 Coordinates of items.
Hypergraph Query Functions
 ZOLTAN_HG_SIZE_CS_FN
 Number of hyperedge pins.
 ZOLTAN_HG_CS_FN
 List of hyperedge pins.
 ZOLTAN_HG_SIZE_EDGE_WTS_FN
 Number of hyperedge weights.
 ZOLTAN_HG_EDGE_WTS_FN
 List of hyperedge weights.
Graph Query Functions
 ZOLTAN_NUM_EDGE_FN
 Number of graph edges.
 ZOLTAN_EDGE_LIST_FN
 List of graph edges and weights.

Slide 24

Graph Partitioning

•  Represent problem as a weighted graph.
–  Vertices = objects to be partitioned.
–  Edges = dependencies between two

objects.
–  Weights = work load or amount of

dependency.
•  Partition graph so that …

–  Parts have equal vertex weight.
–  Weight of edges cut by part boundaries is

small.

•  Zoltan_Set_Param(zz, “LB_METHOD”, “GRAPH”);
•  Zoltan_Set_Param(zz, “GRAPH_PACKAGE”, “ZOLTAN”); or

Zoltan_Set_Param(zz, “GRAPH_PACKAGE”, “PARMETIS”); or
Zoltan_Set_Param(zz, “GRAPH_PACKAGE”, “SCOTCH”);

•  Kernighan, Lin, Schweikert, Fiduccia, Mattheyes, Simon, Hendrickson,
Leland, Kumar, Karypis, et al.

Slide 25 Applications using Graph
Partitioning

x b A

=

Linear solvers & preconditioners
(square, structurally symmetric systems)

Finite Element
Analysis

Multiphysics and
multiphase simulations

Slide 26 Graph Partitioning:
Advantages and Disadvantages

• Advantages:
– Highly successful model for mesh-based PDE problems.
–  Explicit control of communication volume gives higher

partition quality than geometric methods.
–  Excellent software available.

•  Serial: Chaco (SNL)
 Jostle (U. Greenwich)
 METIS (U. Minn.)
 Party (U. Paderborn)
 Scotch (U. Bordeaux)

•  Parallel: Zoltan (SNL)
 ParMETIS (U. Minn.)
 PJostle (U. Greenwich)
 PTScotch (U. Bordeaux)

• Disadvantages:
– More expensive than geometric methods.
–  Edge-cut model only approximates communication volume.

Slide 27 For graph partitioning,
coloring & ordering, use …

General Query Functions
 ZOLTAN_NUM_OBJ_FN
 Number of items on processor
 ZOLTAN_OBJ_LIST_FN
 List of item IDs and weights.
Geometric Query Functions
 ZOLTAN_NUM_GEOM_FN
 Dimensionality of domain.
 ZOLTAN_GEOM_FN
 Coordinates of items.
Hypergraph Query Functions
 ZOLTAN_HG_SIZE_CS_FN
 Number of hyperedge pins.
 ZOLTAN_HG_CS_FN
 List of hyperedge pins.
 ZOLTAN_HG_SIZE_EDGE_WTS_FN
 Number of hyperedge weights.
 ZOLTAN_HG_EDGE_WTS_FN
 List of hyperedge weights.
Graph Query Functions
 ZOLTAN_NUM_EDGE_FN
 Number of graph edges.
 ZOLTAN_EDGE_LIST_FN
 List of graph edges and weights.

Slide 28

A

Graph Partitioning Model

A

Hypergraph Partitioning Model

Hypergraph Partitioning
•  Zoltan_Set_Param(zz, “LB_METHOD”, “HYPERGRAPH”);
•  Zoltan_Set_Param(zz, “HYPERGRAPH_PACKAGE”, “ZOLTAN”); or

Zoltan_Set_Param(zz, “HYPERGRAPH_PACKAGE”, “PATOH”);

•  Alpert, Kahng, Hauck, Borriello, Çatalyürek, Aykanat, Karypis, et al.
•  Hypergraph model:

–  Vertices = objects to be partitioned.
–  Hyperedges = dependencies between two or more objects.

•  Partitioning goal: Assign equal vertex weight while minimizing
hyperedge cut weight.

Slide 29

Best Algorithms Paper Award at IPDPS07
“Hypergraph-based Dynamic Load Balancing for Adaptive Scientific Computations”

Çatalyürek, Boman, Devine, Bozdag, Heaphy, & Riesen

Hypergraph Repartitioning
•  Augment hypergraph with data redistribution costs.

–  Account for data’s current processor assignments.
–  Weight dependencies by their size and frequency of use.

•  Partitioning then tries to minimize total communication volume:
 Data redistribution volume
 + Application communication volume
 Total communication volume

•  Data redistribution volume: callback returns data sizes.
–  Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_MULTI_FN_TYPE,

 myObjSizeFn, 0);
•  Application communication volume = Hyperedge cuts * Number

of times the communication is done between repartitionings.
–  Zoltan_Set_Param(zz, “PHG_REPART_MULTIPLIER”, “100”);

Slide 30

Hypergraph Applications

Circuit Simulations

1
2 Vs

SOURCE_VOLTAGE

1
2 Rs

R

1
2 Cm012

C

1
2 Rg02

R

1
2 Rg01

R

1
2 C01

C

1
2 C02

C
1 2 L2

INDUCTOR

1 2 L1
INDUCTOR 1 2 R1

R

1 2 R2
R

1
2 Rl

R

1
2 Rg1

R

1
2 Rg2

R

1
2 C2

C

1
2 C1

C

1
2 Cm12

C

Linear programming
 for sensor placement

x b A

=

Linear solvers & preconditioners
(no restrictions on matrix structure)

Finite Element
Analysis

Multiphysics and
multiphase simulations

Data Mining

Slide 31 Hypergraph Partitioning:
Advantages and Disadvantages

• Advantages:
– Communication volume reduced 30-38% on average

over graph partitioning (Catalyurek & Aykanat).
•  5-15% reduction for mesh-based applications.

– More accurate communication model than graph
partitioning.

•  Better representation of highly connected and/or
non-homogeneous systems.

– Greater applicability than graph model.
•  Can represent rectangular systems and non-symmetric

dependencies.
• Disadvantages:

– Usually more expensive than graph partitioning.

Slide 32 For hypergraph partitioning
and repartitioning, use …

General Query Functions
 ZOLTAN_NUM_OBJ_FN
 Number of items on processor
 ZOLTAN_OBJ_LIST_FN
 List of item IDs and weights.
Geometric Query Functions
 ZOLTAN_NUM_GEOM_FN
 Dimensionality of domain.
 ZOLTAN_GEOM_FN
 Coordinates of items.
Hypergraph Query Functions
 ZOLTAN_HG_SIZE_CS_FN
 Number of hyperedge pins.
 ZOLTAN_HG_CS_FN
 List of hyperedge pins.
 ZOLTAN_HG_SIZE_EDGE_WTS_FN
 Number of hyperedge weights.
 ZOLTAN_HG_EDGE_WTS_FN
 List of hyperedge weights.
Graph Query Functions
 ZOLTAN_NUM_EDGE_FN
 Number of graph edges.
 ZOLTAN_EDGE_LIST_FN
 List of graph edges and weights.

Slide 33 Or can use graph queries
to build hypergraph.

General Query Functions
 ZOLTAN_NUM_OBJ_FN
 Number of items on processor
 ZOLTAN_OBJ_LIST_FN
 List of item IDs and weights.
Geometric Query Functions
 ZOLTAN_NUM_GEOM_FN
 Dimensionality of domain.
 ZOLTAN_GEOM_FN
 Coordinates of items.
Hypergraph Query Functions
 ZOLTAN_HG_SIZE_CS_FN
 Number of hyperedge pins.
 ZOLTAN_HG_CS_FN
 List of hyperedge pins.
 ZOLTAN_HG_SIZE_EDGE_WTS_FN
 Number of hyperedge weights.
 ZOLTAN_HG_EDGE_WTS_FN
 List of hyperedge weights.
Graph Query Functions
 ZOLTAN_NUM_EDGE_FN
 Number of graph edges.
 ZOLTAN_EDGE_LIST_FN
 List of graph edges and weights.

Slide 34

Computation
Memory

Multi-criteria Load-balancing
• Multiple constraints or objectives

– Compute a single partition that is good
with respect to multiple factors.

•  Balance both computation and memory.
•  Balance meshes in loosely coupled physics.
•  Balance multi-phase simulations.

–  Extend algorithms to multiple weights
•  Difficult. No guarantee good solution exists.

• Zoltan_Set_Param(zz, “OBJ_WEIGHT_DIM”, “2”);
– Available in RCB, RIB and

ParMETIS graph partitioning.
–  In progress in Hypergraph

partitioning.

Slide 35

Heterogeneous Architectures
•  Clusters may have different types of processors.
•  Assign “capacity” weights to processors.

–  E.g., Compute power (speed).
–  Zoltan_LB_Set_Part_Sizes(…);

•  Note: Can use this function to specify part sizes for any purpose.
•  Balance with respect to processor capacity.

•  Hierarchical partitioning: Allows different partitioners at
different architecture levels.

–  Zoltan_Set_Param(zz, “LB_METHOD”, “HIER”);
–  Requires three additional callbacks

to describe architecture hierarchy.
•  ZOLTAN_HIER_NUM_LEVELS_FN
•  ZOLTAN_HIER_PARTITION_FN
•  ZOLTAN_HIER_METHOD_FN

Entire System

... Processor Processor

Core Core ... Core Core ...

Slide 36

Sparse Matrix Ordering problem

A L A L

36

Combinatorial Problem

• When solving sparse linear systems with direct
methods, nonzero terms are created during the
factorization process (A→LU or LDLt or LLt)

• Fill-in depends on the order of the unknowns.
– Need to provide fill-reducing ordering

Slide 37 Sparse LU (or Cholesky)
factorization framework

• 3 essential steps to factorize A in LU:
– Order A:

• Ordering
• minimize the fill-in in L and U

– Compute the structure of L and U:
• Symbolic factorization
• Schedule the numerical factorization

– Compute the values of L and U:
• Numerical factorization

Ordering Symbolic
analysis

Numerical
factorization

A
LU

Structure
 LU PAPt

37

Slide 38

A

S
B A S B

Nested dissection
• Principle [George 1973]

– Find a vertex separator S in graph.
– Order vertices of S with highest available indices.
– Recursively apply the algorithm to the two

separated subgraphs A and B.

38

Slide 39

Matrix Ordering with Zoltan
• Computed by third party libraries:

–  ParMetis (U. Minnesota)
–  Scotch (INRIA Bordeaux)
–  Easy to add another

• The calls to third party libraries are transparent to
the user, thus Zoltan’s calls can be a standard way
to compute ordering

User application

Scotch ParMetis

Zoltan Ordering

Other

Slide 40

Ordering interface in Zoltan
• Compute ordering with one function: Zoltan_Order
• Output provided:

– New order of the unknowns (direct permutation)
– Access to elimination tree, “block” view of the

ordering
• Suitable for parallel symbolic factorization

• Ordering can also be used through Isorropia for
Trilinos User:

– Direct support for Epetra matrices

40

Slide 41

Zoltan Graph Coloring
•  Parallel distance-1 and distance-2 graph coloring.
•  Graph built using same application interface and code

as graph partitioners.
•  Generic coloring interface; easy to add new coloring

algorithms.
•  Algorithms

–  Distance-1 coloring: Bozdag, Gebremedhin, Manne,
Boman, Catalyurek, EuroPar’05, JPDC’08.

–  Distance-2 coloring: Bozdag, Catalyurek, Gebremedhin,
Manne, Boman, Ozguner, HPCC’05, SISC’08 (in
submission).

Slide 42

Distance-1 Graph Coloring
• Problem (NP-hard)

Color the vertices of a graph with as few colors as
possible such that no two adjacent vertices
receive the same color.

• Applications
–  Iterative solution of sparse linear systems
– Preconditioners
– Sparse tiling
– Eigenvalue computation
– Parallel graph partitioning

Slide 43

Distance-2 Graph Coloring
• Problem (NP-hard)

Color the vertices of a graph with as few colors as possible
such that a pair of vertices connected by a path on two or
less edges receives different colors.

• Applications
–  Derivative matrix computation in numerical optimization
–  Channel assignment
–  Facility location

• Related problems
–  Partial distance-2 coloring
–  Star coloring

Slide 44

Coloring Interface in Zoltan

• Both distance-1 and distance-2 coloring

routines can be invoked by Zoltan_Color

function.

• The colors assigned to the objects are

returned in an array.

Slide 45 For graph partitioning,
coloring & ordering, use …

General Query Functions
 ZOLTAN_NUM_OBJ_FN
 Number of items on processor
 ZOLTAN_OBJ_LIST_FN
 List of item IDs and weights.
Geometric Query Functions
 ZOLTAN_NUM_GEOM_FN
 Dimensionality of domain.
 ZOLTAN_GEOM_FN
 Coordinates of items.
Hypergraph Query Functions
 ZOLTAN_HG_SIZE_CS_FN
 Number of hyperedge pins.
 ZOLTAN_HG_CS_FN
 List of hyperedge pins.
 ZOLTAN_HG_SIZE_EDGE_WTS_FN
 Number of hyperedge weights.
 ZOLTAN_HG_EDGE_WTS_FN
 List of hyperedge weights.
Graph Query Functions
 ZOLTAN_NUM_EDGE_FN
 Number of graph edges.
 ZOLTAN_EDGE_LIST_FN
 List of graph edges and weights.

Slide 46

Other Zoltan Functionality
• Tools needed when doing dynamic load balancing:

– Data Migration
– Unstructured Communication Primitives
– Distributed Data Directories

• All functionalities are described in Zoltan User’s Guide.
–  http://www.cs.sandia.gov/Zoltan/ug_html/ug.html

Slide 47

Zoltan Data Migration Tools
•  After partition is computed, data must be moved to new

decomposition.
–  Depends strongly on application data structures.
–  Complicated communication patterns.

•  Zoltan can help!
–  Application supplies query functions to pack/unpack data.
–  Zoltan does all communication to new processors.

Slide 48 Using Zoltan’s
Data Migration Tools

•  Required migration query functions:
–  ZOLTAN_OBJ_SIZE_MULTI_FN:

•  Returns size of data (in bytes) for each object to be exported to a new
processor.

–  ZOLTAN_PACK_MULTI_FN:
•  Remove data from application data structure on old processor;
•  Copy data to Zoltan communication buffer.

–  ZOLTAN_UNPACK_MULTI_FN:
•  Copy data from Zoltan communication buffer into data structure on new

processor.

• int Zoltan_Migrate(struct Zoltan_Struct *zz, 
 int num_import, ZOLTAN_ID_PTR import_global_ids, 
 ZOLTAN_ID_PTR import_local_ids, int *import_procs, 
 int *import_to_part, 
 int num_export, ZOLTAN_ID_PTR export_global_ids, 
 ZOLTAN_ID_PTR export_local_ids, int *export_procs, 
 int *export_to_part);

Slide 49

Graph-based
decomposition

RCB
decomposition

Zoltan_Comm_Do

Zoltan_Comm_Do_Reverse

Zoltan Unstructured
Communication Package

•  Simple primitives for efficient irregular communication.
–  Zoltan_Comm_Create: Generates communication plan.

•  Processors and amount of data to send and receive.
–  Zoltan_Comm_Do: Send data using plan.

•  Can reuse plan. (Same plan, different data.)
–  Zoltan_Comm_Do_Reverse: Inverse communication.

•  Used for most communication in Zoltan.

Slide 50 Example Application:
Crash Simulations

RCB

Graph-based

RCB

RCB mapped to time 0

1.6 ms

RCB

RCB mapped to time 0

3.2 ms

• Multiphase simulation:
–  Graph-based decomposition of elements for finite element calculation.
–  Dynamic geometric decomposition of surfaces for contact detection.
–  Migration tools and Unstructured Communication package map

between decompositions.

Slide 51

• Helps applications locate off-processor data.
• Rendezvous algorithm (Pinar, 2001).

– Directory distributed in known way (hashing) across
processors.

– Requests for object location
sent to processor storing
the object’s directory entry.

A B C
0 1 0

D E F
2 1 0

G H I
1 2 1

Processor 0 Processor 1 Processor 2

Directory Index 
 Location 

Zoltan Distributed Data Directory

A F

C

B

E

I

G H
D

Processor 0

Processor 1

Processor 2

Slide 52

Alternate Interfaces to Zoltan
• C, C++ and F90 interfaces in Zoltan.

• Matrix-based interface in Trilinos.

• Mesh-based interface in ITAPS.

Slide 53 Isorropia:
Trilinos Interface to Zoltan

•  Trilinos Toolkit (M. Heroux, SNL, PI): Packages for …
–  Parallel matrix and vector classes (Epetra)
–  Linear, nonlinear and eigen solvers
–  Preconditioners
–  Matrix partitioning (Isorropia)
–  Time integration, discretizations, inline meshing, ….

•  Epetra provides parallel matrix and vector classes.
•  Isorropia uses Zoltan to repartition Epetra objects.

–  B = Isorropia::Epetra::createBalancedCopy(A, params); or
–  Partitioner, redistributor, and cost-evaluator classes.

•  Trilinos v9.0 includes:
–  Zoltan in the Trilinos distribution and build environment.
–  Isorropia interfaces to matrix ordering and coloring.

(Member of SciDAC2 TOPS CET)

Slide 54 ITAPS Dynamic Services:
Mesh-based Interface to Zoltan

•  Interoperable Technologies for Advanced Petascale
Simulations (L. Diachin, LLNL, PI)

–  SciDAC2 CET.
•  ITAPS Goals:

– Develop the next generation of meshing and geometry
tools for petascale computing.

•  E.g., adaptive mesh refinement, shape optimization.

–  Improve applications’ ability to use these tools.

•  “Standardization” of mesh interfaces.
• Dynamic Services toolkit:

–  ITAPS-compliant mesh interface
 to Zoltan tools.

–  Integration with ITAPS iMeshP
parallel mesh interface to be
released FY09.

Image courtesy of M. Shephard, RPI

Slide 55

Current Work
• Two-dimensional matrix partitioning.
• Performance improvements for hypergraph

partitioning.
• Multi-criteria hypergraph partitioning.
• May be available in Trilinos 10:

– Non-symmetric matrix ordering.
– Other coloring problems: partial distance 2, …

Slide 56

For More Information...
• Zoltan Home Page

–  http://www.cs.sandia.gov/Zoltan
– User’s and Developer’s Guides
–  Tutorial: “Getting Started with Zoltan: A Short Tutorial”
– Download Zoltan software under GNU LGPL.

• Trilinos Home Page
–  http://trilinos.sandia.gov

•  ITAPS Home Page
–  http://www.itaps.org

• CSCAPES Home Page
–  http://www.cscapes.org

• Email:
–  zoltan-dev@software.sandia.gov
–  kddevin@sandia.gov

