/*------------------------------- phasicFlow --------------------------------- O C enter of O O E ngineering and O O M ultiscale modeling of OOOOOOO F luid flow ------------------------------------------------------------------------------ Copyright (C): www.cemf.ir email: hamid.r.norouzi AT gmail.com ------------------------------------------------------------------------------ Licence: This file is part of phasicFlow code. It is a free software for simulating granular and multiphase flows. You can redistribute it and/or modify it under the terms of GNU General Public License v3 or any other later versions. phasicFlow is distributed to help others in their research in the field of granular and multiphase flows, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. -----------------------------------------------------------------------------*/ #ifndef __AdamsBashforth4_hpp__ #define __AdamsBashforth4_hpp__ #include "integration.hpp" #include "pointFields.hpp" namespace pFlow { struct AB4History { TypeInfoNV("AB4History"); realx3 dy1_={0,0,0}; realx3 dy2_={0,0,0}; realx3 dy3_={0,0,0}; }; INLINE_FUNCTION iIstream& operator>>(iIstream& str, AB4History& ab4) { str.readBegin("AB4History"); str >> ab4.dy1_; str >> ab4.dy2_; str >> ab4.dy3_; str.readEnd("AB4History"); str.check(FUNCTION_NAME); return str; } INLINE_FUNCTION iOstream& operator<<(iOstream& str, const AB4History& ab4) { str << token::BEGIN_LIST << ab4.dy1_ << token::SPACE << ab4.dy2_ << token::SPACE << ab4.dy3_ << token::END_LIST; str.check(FUNCTION_NAME); return str; } /** * Fourth order Adams-Bashforth integration method for solving ODE * * This is a one-step integration method and does not have prediction step. */ class AdamsBashforth4 : public integration { protected: /// Integration history pointField& history_; /// Range policy for integration kernel using rpIntegration = Kokkos::RangePolicy< DefaultExecutionSpace, Kokkos::Schedule, Kokkos::IndexType >; public: /// Type info TypeInfo("AdamsBashforth4"); // - Constructors /// Construct from components AdamsBashforth4( const word& baseName, repository& owner, const pointStructure& pStruct, const word& method); uniquePtr clone()const override { return makeUnique(*this); } /// Destructor virtual ~AdamsBashforth4()=default; /// Add a this to the virtual constructor table add_vCtor( integration, AdamsBashforth4, word); // - Methods bool predict( real UNUSED(dt), realx3Vector_D & UNUSED(y), realx3Vector_D& UNUSED(dy)) override; bool correct( real dt, realx3Vector_D & y, realx3Vector_D& dy) override; bool setInitialVals( const int32IndexContainer& newIndices, const realx3Vector& y) override; bool needSetInitialVals()const override { return false; } /// Integrate on all points in the active range bool intAll( real dt, realx3Vector_D& y, realx3Vector_D& dy, range activeRng); /// Integrate on active points in the active range template bool intRange( real dt, realx3Vector_D& y, realx3Vector_D& dy, activeFunctor activeP ); }; template bool pFlow::AdamsBashforth4::intRange( real dt, realx3Vector_D& y, realx3Vector_D& dy, activeFunctor activeP ) { auto d_dy = dy.deviceVectorAll(); auto d_y = y.deviceVectorAll(); auto d_history = history_.deviceVectorAll(); auto activeRng = activeP.activeRange(); Kokkos::parallel_for( "AdamsBashforth4::correct", rpIntegration (activeRng.first, activeRng.second), LAMBDA_HD(int32 i){ if( activeP(i)) { d_y[i] += dt*( static_cast(55.0 / 24.0) * d_dy[i] - static_cast(59.0 / 24.0) * d_history[i].dy1_ + static_cast(37.0 / 24.0) * d_history[i].dy2_ - static_cast( 9.0 / 24.0) * d_history[i].dy3_ ); d_history[i].dy3_ = d_history[i].dy2_; d_history[i].dy2_ = d_history[i].dy1_; d_history[i].dy1_ = d_dy[i]; } }); Kokkos::fence(); return true; } } // pFlow #endif //__integration_hpp__