Files
phasicFlow/src/Integration/AdamsMoulton5/AdamsMoulton5.hpp

232 lines
5.1 KiB
C++

/*------------------------------- phasicFlow ---------------------------------
O C enter of
O O E ngineering and
O O M ultiscale modeling of
OOOOOOO F luid flow
------------------------------------------------------------------------------
Copyright (C): www.cemf.ir
email: hamid.r.norouzi AT gmail.com
------------------------------------------------------------------------------
Licence:
This file is part of phasicFlow code. It is a free software for simulating
granular and multiphase flows. You can redistribute it and/or modify it under
the terms of GNU General Public License v3 or any other later versions.
phasicFlow is distributed to help others in their research in the field of
granular and multiphase flows, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-----------------------------------------------------------------------------*/
#ifndef __AdamsMoulton5_hpp__
#define __AdamsMoulton5_hpp__
#include "integration.hpp"
#include "pointFields.hpp"
namespace pFlow
{
/**
* Fifth order Adams-Moulton integration method for solving ODE
*
* This is a predictor-corrector integration method.
*/
class AdamsMoulton5
:
public integration
{
protected:
/// y at time t
realx3PointField_D& y0_;
/// dy at time t
realx3PointField_D& dy0_;
/// dy at time t-dt
realx3PointField_D& dy1_;
/// dy at time t-2*dt
realx3PointField_D& dy2_;
/// dy at time t-3*dt
realx3PointField_D& dy3_;
/// Range policy for integration kernel
using rpIntegration = Kokkos::RangePolicy<
DefaultExecutionSpace,
Kokkos::Schedule<Kokkos::Static>,
Kokkos::IndexType<int32>
>;
public:
/// Type info
TypeInfo("AdamsMoulton5");
// - Constructors
/// Construct from components
AdamsMoulton5(
const word& baseName,
repository& owner,
const pointStructure& pStruct,
const word& method);
uniquePtr<integration> clone()const override
{
return makeUnique<AdamsMoulton5>(*this);
}
/// Destructor
virtual ~AdamsMoulton5()=default;
// - add a virtual constructor
add_vCtor(
integration,
AdamsMoulton5,
word);
// - Methods
bool predict(
real dt,
realx3Vector_D& y,
realx3Vector_D& dy) override;
bool correct(
real dt,
realx3Vector_D& y,
realx3Vector_D& dy) override;
bool setInitialVals(
const int32IndexContainer& newIndices,
const realx3Vector& y) override;
bool needSetInitialVals()const override
{
return true;
}
/// Prediction step on all points in the active range
bool predictAll(
real dt,
realx3Vector_D& y,
realx3Vector_D& dy,
range activeRng);
/// Prediction step on active points in the active range
template<typename activeFunctor>
bool predictRange(
real dt,
realx3Vector_D& y,
realx3Vector_D& dy,
activeFunctor activeP);
/// Integrate on all points in the active range
bool intAll(
real dt,
realx3Vector_D& y,
realx3Vector_D& dy,
range activeRng);
/// Integrate on active points in the active range
template<typename activeFunctor>
bool intRange(
real dt,
realx3Vector_D& y,
realx3Vector_D& dy,
activeFunctor activeP );
};
template<typename activeFunctor>
bool AdamsMoulton5::predictRange(
real dt,
realx3Vector_D& y,
realx3Vector_D& dy,
activeFunctor activeP )
{
auto d_dy = dy.deviceViewAll();
auto d_y = y.deviceViewAll();
auto d_y0 = y0_.deviceViewAll();
auto d_dy0 = dy0_.deviceViewAll();
auto d_dy1 = dy1_.deviceViewAll();
auto d_dy2 = dy2_.deviceViewAll();
auto d_dy3 = dy3_.deviceViewAll();
auto activeRng = activeP.activeRange();
Kokkos::parallel_for(
"AdamsMoulton5::predictRange",
rpIntegration (activeRng.first, activeRng.second),
LAMBDA_HD(int32 i){
if(activeP(i))
{
d_dy0[i] = d_dy[i];
d_y[i] = d_y0[i] + dt*(
static_cast<real>(55.0/24.0) * d_dy[i]
- static_cast<real>(59.0/24.0) * d_dy1[i]
+ static_cast<real>(37.0/24.0) * d_dy2[i]
- static_cast<real>( 9.0/24.0) * d_dy3[i]);
}
});
Kokkos::fence();
return true;
}
template<typename activeFunctor>
bool pFlow::AdamsMoulton5::intRange(
real dt,
realx3Vector_D& y,
realx3Vector_D& dy,
activeFunctor activeP )
{
auto d_dy = dy.deviceViewAll();
auto d_y = y.deviceViewAll();
auto d_dy0 = dy0_.deviceViewAll();
auto d_y0 = y0_.deviceViewAll();
auto d_dy1 = dy1_.deviceViewAll();
auto d_dy2 = dy2_.deviceViewAll();
auto d_dy3 = dy3_.deviceViewAll();
auto activeRng = activeP.activeRange();
Kokkos::parallel_for(
"AdamsMoulton5::correct",
rpIntegration (activeRng.first, activeRng.second),
LAMBDA_HD(int32 i){
if( activeP(i))
{
auto corrct_y = d_y0[i] + dt*(
static_cast<real>(251.0/720.0)*d_dy[i]
+ static_cast<real>(646.0/720.0)*d_dy0[i]
- static_cast<real>(264.0/720.0)*d_dy1[i]
+ static_cast<real>(106.0/720.0)*d_dy2[i]
- static_cast<real>( 19.0/720.0)*d_dy3[i]);
d_dy3[i]= d_dy2[i];
d_dy2[i]= d_dy1[i];
d_dy1[i]= d_dy0[i];
d_y0[i] = corrct_y;
d_y[i] = corrct_y;
}
});
Kokkos::fence();
return true;
}
} // pFlow
#endif //__integration_hpp__