Files
phasicFlow/src/Interaction/Models/contactForce/cGNonLinearCF.hpp
HRN 0fc9eea561 timeInfo and timeValue
- timeInfo updated
- timeValue type is added = double
- AB2 bug fixed
- updateInterval for broadSearch is activated
2025-01-25 19:18:11 +03:30

308 lines
6.5 KiB
C++

/*------------------------------- phasicFlow ---------------------------------
O C enter of
O O E ngineering and
O O M ultiscale modeling of
OOOOOOO F luid flow
------------------------------------------------------------------------------
Copyright (C): www.cemf.ir
email: hamid.r.norouzi AT gmail.com
------------------------------------------------------------------------------
Licence:
This file is part of phasicFlow code. It is a free software for simulating
granular and multiphase flows. You can redistribute it and/or modify it under
the terms of GNU General Public License v3 or any other later versions.
phasicFlow is distributed to help others in their research in the field of
granular and multiphase flows, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-----------------------------------------------------------------------------*/
#ifndef __cGNonLinearCF_hpp__
#define __cGNonLinearCF_hpp__
#include "types.hpp"
namespace pFlow::cfModels
{
template<bool limited=true>
class cGNonLinear
{
public:
struct contactForceStorage
{
realx3 overlap_t_ = 0.0;
};
struct cGNonLinearProperties
{
real Yeff_ = 1000000.0;
real Geff_ = 8000000.0;
real en_ = 1.0;
real mu_ = 0.00001;
INLINE_FUNCTION_HD
cGNonLinearProperties(){}
INLINE_FUNCTION_HD
cGNonLinearProperties(real Yeff, real Geff, real en, real mu ):
Yeff_(Yeff), Geff_(Geff), en_(en), mu_(mu)
{}
INLINE_FUNCTION_HD
cGNonLinearProperties(const cGNonLinearProperties&)=default;
INLINE_FUNCTION_HD
cGNonLinearProperties& operator=(const cGNonLinearProperties&)=default;
INLINE_FUNCTION_HD
~cGNonLinearProperties() = default;
};
protected:
using cGNonLinearArrayType = symArray<cGNonLinearProperties>;
int32 numMaterial_ = 0;
ViewType1D<real> rho_;
int32 addDissipationModel_;
cGNonLinearArrayType nonlinearProperties_;
bool readNonLinearDictionary(const dictionary& dict)
{
auto Yeff = dict.getVal<realVector>("Yeff");
auto Geff = dict.getVal<realVector>("Geff");
auto nu = dict.getVal<realVector>("nu");
auto en = dict.getVal<realVector>("en");
auto mu = dict.getVal<realVector>("mu");
auto nElem = Yeff.size();
if(nElem != nu.size())
{
fatalErrorInFunction<<
"sizes of Yeff("<<nElem<<") and nu("<<nu.size()<<") do not match.\n";
return false;
}
if(nElem != en.size())
{
fatalErrorInFunction<<
"sizes of Yeff("<<nElem<<") and en("<<en.size()<<") do not match.\n";
return false;
}
if(nElem != mu.size())
{
fatalErrorInFunction<<
"sizes of Yeff("<<nElem<<") and mu("<<mu.size()<<") do not match.\n";
return false;
}
// check if size of vector matchs a symetric array
uint32 nMat;
if( !cGNonLinearArrayType::getN(nElem, nMat) )
{
fatalErrorInFunction<<
"sizes of properties do not match a symetric array with size ("<<
numMaterial_<<"x"<<numMaterial_<<").\n";
return false;
}
else if( numMaterial_ != nMat)
{
fatalErrorInFunction<<
"size mismatch for porperties. \n";
return false;
}
Vector<cGNonLinearProperties> prop("prop",nElem);
ForAll(i,Yeff)
{
prop[i] = {Yeff[i], Geff[i], en[i], mu[i]};
}
nonlinearProperties_.assign(prop);
auto adm = dict.getVal<word>("additionalDissipationModel");
if(adm == "none")
{
addDissipationModel_ = 1;
}
else if(adm == "LU")
{
addDissipationModel_ = 2;
}
else if (adm == "GB")
{
addDissipationModel_ = 3;
}
else
{
addDissipationModel_ = 1;
}
return true;
}
static const char* modelName()
{
if constexpr (limited)
{
return "cGNonLinearLimited";
}
else
{
return "cGNonLinearNonLimited";
}
return "";
}
public:
TypeInfoNV(modelName());
INLINE_FUNCTION_HD
cGNonLinear(){}
cGNonLinear(
int32 nMaterial,
const ViewType1D<real>& rho,
const dictionary& dict)
:
numMaterial_(nMaterial),
rho_("rho",nMaterial),
nonlinearProperties_("cGNonLinearProperties",nMaterial)
{
Kokkos::deep_copy(rho_,rho);
if(!readNonLinearDictionary(dict))
{
fatalExit;
}
}
INLINE_FUNCTION_HD
cGNonLinear(const cGNonLinear&) = default;
INLINE_FUNCTION_HD
cGNonLinear(cGNonLinear&&) = default;
INLINE_FUNCTION_HD
cGNonLinear& operator=(const cGNonLinear&) = default;
INLINE_FUNCTION_HD
cGNonLinear& operator=(cGNonLinear&&) = default;
INLINE_FUNCTION_HD
~cGNonLinear()=default;
INLINE_FUNCTION_HD
int32 numMaterial()const
{
return numMaterial_;
}
//// - Methods
INLINE_FUNCTION_HD
void contactForce
(
const real dt,
const uint32 i,
const uint32 j,
const uint32 propId_i,
const uint32 propId_j,
const real Ri,
const real Rj,
const real cGFi,
const real cGFj,
const real ovrlp_n,
const realx3& Vr,
const realx3& Nij,
contactForceStorage& history,
realx3& FCn,
realx3& FCt
)const
{
const auto prop = nonlinearProperties_(propId_i,propId_j);
const real f = 2/( 1/cGFi + 1/cGFj );
real vrn = dot(Vr, Nij);
realx3 Vt = Vr - vrn*Nij;
history.overlap_t_ += Vt*dt;
real mi = 3*Pi/4*pow(Ri,static_cast<real>(3))*rho_[propId_i];
real mj = 3*Pi/4*pow(Rj,static_cast<real>(3))*rho_[propId_j];
real Reff = 1/(1/Ri + 1/Rj);
real K_hertz = 4.0/3.0*prop.Yeff_*sqrt(Reff);
real sqrt_meff_K_hertz = sqrt((mi*mj)/(mi+mj) * K_hertz);
real en = prop.en_;
if (addDissipationModel_==2)
{
en = sqrt(1+((pow(prop.en_,2)-1)*f));
}
else if (addDissipationModel_==3)
{
en = exp((pow(f,static_cast<real>(1.5))*log(prop.en_)*sqrt( (1-((pow(log(prop.en_),2))/(pow(log(prop.en_),2)+pow(Pi,2))))/(1-(pow(f,3)*(pow(log(prop.en_),2))/(pow(log(prop.en_),2)+pow(Pi,2)))) ) ));
}
real Kn = static_cast<real>(4.0/3.0) * prop.Yeff_ * sqrt(Reff*ovrlp_n);
real ethan_ = -2.0*log(en)*sqrt(Kn)/
sqrt(pow(log(en),2)+ pow(Pi,2));
FCn = ( - Kn*ovrlp_n -
sqrt_meff_K_hertz*ethan_*pow(ovrlp_n,static_cast<real>(0.25))*vrn)*Nij;
FCt = (f*f)*(- static_cast<real>(8.0) * prop.Geff_ * sqrt(Reff*ovrlp_n) ) * history.overlap_t_;
real ft = length(FCt);
real ft_fric = prop.mu_ * length(FCn);
// apply friction
if(ft > ft_fric)
{
if( length(history.overlap_t_) >0.0)
{
if constexpr (limited)
{
real kt = static_cast<real>(8.0) * prop.Geff_ * sqrt(Reff*ovrlp_n);
FCt *= (ft_fric/ft);
history.overlap_t_ = - FCt/(f*f*kt);
}
else
{
FCt = (FCt/ft)*ft_fric;
}
}
else
{
FCt = 0.0;
}
}
}
};
} //pFlow::CFModels
#endif